
3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 1

3D videogames

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

2

4

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 2

Suggested reading

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 See prev. lecture for the list

6

7

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 3

Point, Vectors, Versors
represents: example: imagine it as…

Point
A position

A location

Where a character is

The center of a sphere
a small
floating dot :-D

Vector

A displacement

The difference
between 2 points.

The vector that
connects them.

The velocity of
a thrown knife

The gravity acceleration

How to reach the head of
a character from its neck

a small
arrow :-D
(length is
relevant)

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized

vector

A direction

A facing

The view direction of a
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

the same :-D
(its length is
irrelevant)

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle

8

9

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 4

Points, Vectors, Versors
…in a character

Examples of…
 points:

 the pos of the navel
 the pos of lewer-left tip of the hood

 vectors:
 the vector connecting the L foot

to the R foot
 the vector from the hand

to the tip of the lance

 versors:
 the gaze direction
 the facing of the shield

Points, Vectors, Versors:
Internal representation

 n-tuple of scalar values (n is the dimension)
 with n = 3 (rarely, 2 or 4)
 they are the Cartesian coordinates of the point/vector

 e.g.: or:

 note: the same structure is often used
for points, vectors, and versors

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

10

18

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 5

Points, Vectors, Versors:
Internal representation

 one class for points, vectors, and versors
 E.g. done by:

 (and also by: GLSL, HLSL, Eigen, GLM, …)

class Vector3
https://docs.unity3d.com/ScriptReference/Vector3.html

class FVector
http://api.unrealengine.com/INT/API/Runtime/Core/Math/FVector/

Caveat:
one type, multiple semantics

 Many libraries/engines choose can opt to use
the same data type for 3D points, 3D vectors, 3D versors,
(plus, sometimes: colors, and more)
 alternatively, a library can use different types, e.g. Vector, Point, Versor

 Still, they should not be considered the same thing
 that’s nothing new:

likewise, we use the same scalar data types (“float”, “doubles”)
with widely different semantics (e.g. “weight”, “volume”, “temperature”…).

 It is up to us to operate on them accordingly
 e.g.: not ok to sum a temperature with a surface
 e.g.: ok to divide a weight by a volume (and get a specific weight)

 which operation does make sense on points, vectors, versors?
 that is, what is their algebra ?

19

20

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 6

Point, vector, versor algebra
 Hint: before going on, make sure to understand

each of the following operation in 3 different ways:

intuitive / spatial: what does it do conceptually / visually

algebraic / code: how to compute the result, starting from
(1) the coordinates of the operand(s)
(2) and, additionally, (for products)

the angle between the two operands, and their the lengths
syntactic: how to write them down
(1) on paper (mathematical notation)
(2) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

 And, to familiarize with their rules such as
(1) invariance (associativity?, commutativity?)
(2) distributivity? (between operations)
(3) inverse operation? itentity element? absorbing element?

✎

Refer to
the CG course
and the book

⚙
⚙

Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition:
point + vector = point

24

25

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 7

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar = vector)
 therefore: interpolation

mix(𝑣଴ , 𝑣ଵ, 𝑡) = 1 − 𝑡 𝑣଴ + 𝑡 𝑣ଵ

 therefore: opposite (flip verse)
(how to: multiply by – 1)

 therefore: difference
(vector – vector = vector)

Point and vector algebra
(summary 3/7)

 Norm (for vectors)
 aka length / magnitude /

Euclidean norm / 2-norm
 distance between points:

length of vector (a – b) = distance between a and b
 Rules: triangle inequality:

26

27

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 8

Point and vector algebra
(summary 4/7)

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by (1.0 / length)

Point and vector algebra
(summary 5/7)

 Interpolate between pairs of <something> :
 mix(point , point , t) → point
 mix(vector , vector , t) → vector
 mix(versor , versor , t) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0 or t > 1 → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

28

29

3D Video Games
02: Point and Vector Algebra (part I)

2020-05-07

Marco Tarini
Unviersità degli studi di Milano 9

Interpolation in general - notes

 Very used in Computer Graphics (e.g. rendering, animation)
 Terminology:

 a x + b y : a linear combination of x and y
 if a+b=1 and a,b ∈[0,1] : a (linear) interpolation of x and y
 if a+b=1 but a,b ∉[0,1] : a (linear) extrapolation of x and y
 a , b : the weights a + b = 1 : weights are a partition of unity

 Generalizes to > 2 objects (a x + b y + c z)
 In interpolations of 2, we can just give one weight t.

 The other is is given by difference. a = t, b = 1-t

 General! All sort of objects can be interpolated
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
 1 − 𝑡 𝐩଴ + 𝑡 𝐩ଵ

which is just a shortcut to express:
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

 …two versors 𝐝଴ and 𝐝ଵ :
 1 − 𝑡 𝐝଴ + 𝑡 𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)…

Multiplying a point
with a scalar?

Summing two points?
Are these operations

even legal?

Just legal operations
(to-do: check)

Linear
interpolation

But easily
generalizes to > 2

NEXT
LECTURE

30

31

