
3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 1

3D VideoGames

Representing Rotations

Marco Tarini

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 2

Preamble: 
representing rotations in 2D

 Trivial representation: 
one angle (a dimensionless scalar)

 Semantic:
 If positive: counter-clockwise
 If negative: clockwise

 Choices:
 unity of measure: degree or radians?
 which interval? E.g. [0..360) or (-180..+180]

a «pseudo-scalar»
(as it changes sign
if we mirror the 
scene)

Preamble: 
representing rotations in 2D
 Is it convenient to…
 Store? 
✓ it’s one scalar

 Apply? 
✓ easy & fast:

 Invert? 
✓ Just flip the sign

 Cumulate? 
✓ Just sum the two angles (modulo 360°)

 Design / manually assign? 
✓ easy.

E.g. 0° = east. 90° = north. 180° = west. 270° = South.

𝑟ఈ

𝑥
𝑦  =

cos 𝛼 𝑥 − sin 𝛼 𝑦

sin 𝛼 𝑥 − cos 𝛼 𝑦

two constants
(for a given 𝛼 ) 

and N-E = 45°

4

5



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 3

Preamble: 
representing rotations in 2D
 Is it convenient to…
 Interpolate? 
Can we just… mix( 𝛼, 𝛽, 𝑡 )

 Example: mid-way between North = 90° and West = 180°
𝑚𝑖𝑥( 90°, 180°, 0.5 ) = 135° = NW  … checks out!

 But consider this case:

𝛼 1 − 𝑡 +  𝛽 𝑡

+20°
+350° ≅ -10°

Time = 1 Time = 3Time = 2

?
interpolate
the facing

Preamble: 
representing rotations in 2D
 Which is the correct interpolation? 

+20°
+350° ≅ -10°

Time = 1 Time = 3Time = 2

+20°
+350° ≅ -10°

mix( 20° , 350°, 0.5) = 175°

mix( 20° , -10°, 0.5) = 5°

???

E.g. in an animation

6

7



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 4

Preamble: 
representing rotations in 2D

 Is it convenient to… interpolate? ✓ Yes, but,
 Problem: angles 𝛼 and  𝛼+360° are equivalent

𝛼 ≅ 𝛼 + 360 ≅ 𝛼 + 𝑘 360°   (any 𝑘 ∈ ℤ )
 General solution: 

to interpolate between two rotations 𝛼 and 𝛽 …
1. Find 𝛽′ equivalent to  𝛽

that is most similar to 𝛼
(here: choose between 𝛽 and 𝛽 − 360° )

2. Linear interpolation (mix) between 𝛼 and 𝛽′ (not 𝛽 )

 We will encounter the same problem/solution again…

aka “take the shortest path”

Preamble: 
representing rotations in 2D

 Go angle → vector

x

y

α

cos(α) 
sin(α) 

=

8

9



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 5

Preamble: 
representing rotations in 2D

 Go angle ← vector

x

y

α

pro tip: use atan2 in any language: α = atan2( y , x )

3D rotations:
how many dimension?

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

RR10

R11R11

R12R12

R13R13

etc etc

10

11



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 6

3D rotations:
how many dimension?

R0

(clearly, they include the identity too)

Answer: 3 DOF (degrees of freedom).
i.e., rotations in 3D are a 3 dimensional space.

How to (internally) 
represent a 3D rotation ?

that is, also,
the orientation of 

an object

12

13



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 7

Rotations as 3x3 matrices (9 scalars)

 after all, rotations are linear operators
 Rot = 3x3 submatrix of a 4x4 rotation affine matrix

 Reminder: R is orthonormal, with det = +1

R
0
0
0
10  0  0

Rotations as 3x3 matries (9 scalars)

 Wasteful in RAM (9 scalars, versus a minimum of 3)

 Easy to apply (matrix-vector prod: 9 mults)

 Relat. easy to compose (matrix-matrix prod: 27 x mult)

 Immediate to invert (just transpose)

 Interpolate: troubles

R0
k + (1-k) R1

= M
NOT a
rotation

why?

15

16



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 8

Rotations as 3x3 matrices (9 scalars):
compositions

 Multiplying matrices composites the rotation
 remember: neither matrix-matrix product,

nor composition of 3D rotations, is commutative!

 e.g.: RTOT = R0 · R1

 rotate as R1 followed by R0

 with R0 · R1 rotation matrices
 i.e. orthonormal matrices with det = 1

 RTOT  is a rotation matrix too, in theory
 in practice, approximation errors can break that
 especially after long sequences of compositions.

Local 
Space

World 
Space

Transform

forward
(0,0,1)

right 
(1,0,0)

up
(0,1,0)

origin

Z

X

Y

ZX Y origin

t
ssR

rotate translate scale

17

19



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 9

Rotations as 3x3 matrices (9 scalars)

 Nice plus:
its three columns are 
the three versors representing 
the X , Y , Z axis of the local space
in global space
 i.e. the world-space versors

representing local right, upward, forward (in Unity)
or local forward, right, upward (in Unreal engine) 

Rotations as 3x3 matrices exercise:
“look-at” rotation

 Given observer position A and observed point B
 or, directly, a look direction v = (B – A) / ‖ B – A ‖

find the rotation (i.e. the orientation) 
for a character who must be looking in that direction

 Incomplete specification!
We also need in input: a «target up-vector» u
 the character wants to keep its up-direction as similar as 

possible to u, while looking toward B
 Usually, the (world) up-vector, e.g. (in Unity) (0,1,0)

 Very useful for characters looking at something
/ facing toward something

20

22



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 10

Rotations as 3x3 matrices exercise:
“look-at” rotation

 Solution:
 find the x, y, z directions of this local character
 note: they must be 3 reciprocally orthogonal versors
 make them the columns of the 3x3 rotation matrix

 for example (using Unity conventional axis names):
 z = v (easy! the forward direction is exactly v!)
 y = u ?  NO! it wouldn’t be necessarily orthogonal with z
 but, x = u × z / ‖ u × z ‖ (note the re-normalization) 

i.e. the right vector is orthogonal to both z and u
 finally, y = z × x

Representations of 
3D rotations

3x3 matrices
Euler angles

 the most intuitive way to 
express a rotation

e.g., well understood by digital artists!

23

24



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 11

Rotations as Euler angles (3 scalars)

 Any 3D rotation can be expressed 
as:
 a rotation around X axis (by α degrees), followed by: 

 a rotation around Y axis (by β degrees), followed by : 

 a rotation around Z axis (by γ degrees): 

 Angles α β γ : 
“Euler angles” of a specific rotation
 (therefore: its “coordinates”)

this order (X-Y-Z)
is chosen arbitrary 
but once 
and for all!
(in a given game 
engine / lib)

Rotations as Euler angles (3 scalars)

 In nautical / aeronautical language,
the three angles have names:

roll
( rollio )

pitch
( beccheggio )

yaw
( imbardata )

25

27



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 12

Rotations as Euler angles (3 scalars)

 A physical 
implementation:
“three axes
globe”

Rotations as Euler angles (3 scalars)

 Is it 1:1 ?
 1 rotation  1 euler angle triplet ?

 Almost
 assuming angles are properly 

bounded (exercise: how?)

 Ugly exception:
“GIMBAL LOCK”
 when 1st rotation

makes the axes of the next
two axes coincide

 this cannot be avoided,
no matter how axes are chosen

28

29



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 13

Rotations as Euler angles (3 scalars)

 Conciseness: perfect! 3 scalars for 3 DOF
 Application : a bit work-intensive
 three rotations in succession

 Interpolation : you can do that…
 just interpolate the three angles
 (remember to always “pick the shortest path”

whenever interpolating angles: that is,
must take in account the α ≈ α + 360 k equivalence)

…but results won’t always be nice !
 Composite  /  invert: not easy nor immediate…

exercise: why just summing / flipping 
the three angles won’t work?

from: euler angles
to: 3x3 matrix

 Easy to write down!

 requires several sin / cos evaluations (and matrix mult)

 What about the vice-versa?
 a medium-difficulty exercise 
 not very convenient:

many inverse trigonometric functions

୸ ୷ ୶

1  0 0
0 cos (𝛼) −sin (𝛼)
0 sin (𝛼)     cos (𝛼)

 

30

31



3D Video Games                                           
04: Rotations 1/2

2021-03-16

Marco Tarini                                  
Università degli studi di Milano 14

Comparing representations (so far)
3x3 Matrix Euler Angles

Space efficient?
(in RAM, GPU, storage…)

Apply
(to points/vectors)

Invert
(produce inverse)

Composite 
(with another rotation)

Interpolate
(with another rotation)

Intuitive?
(e.g. to manually  set)

Notes… Free extra
skew + scale!

easy to do…
unintuitive result

trigonometry
sin/cos

?!?

9 products
(3 dot products)

just 
transpose

9 scalars 3 scalars
(even small int!)

roll &
yaw &
pitch

matrix
multiplication
(9 dots)

GIMBAL 
LOCK

E
 f

 f
ic

 i
e

 n
 t

  /
 e

 a
 s

 y
  

  
t 

o

32


