
3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Quaternions: exercises

 Which quaternion encodes a turnabout?
 (ita: «un dietrofront»: turning 180° around the up vector)

 Apply that quaternion to rotate a point in (x,y,z)
 Use plain quaternion algebra, and algebraic notation

 Which quaternion encodes the identity rotation?
 Is it the only one? If not, which other does?
 Verify by applying it (or them)

 Which quaternion encodes a turn of 90° to the left?
 Uses your previous two answers to find the quat.

encoding turn 45° to the left, by using interpolation
 Do you need SLERP in this case? Is NLERP enough? Why?
 Verify that the solution is correct using the axis-angle formula

60

61

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 2

3D Rotations as Quaternions:
equivalent representations
 Around axis aො by angle α :

q = sin
α

2
aො , cos

α

2

 Around axis −aො by angle (−α) : (it’s the same rotation!)

qᇱ = −sin
ି஑

ଶ
aො , cos

ି஑

ଶ
= q

Good! But:
 Around axis aො by angle (α + 360°) : (it’s the same rotation!)

qᇱᇱ = sin
஑

ଶ
+ 180° aො , cos

஑

ଶ
+ 180° =

= −sin
஑

ଶ
aො , −cos

஑

ଶ
= - q

 Conclusion:
quaternion q and quaternion −q encode the same rotation

same quaternion :-)

different quaternion :-(

3D Rotations as Quaternions:
equivalent representations

Given a quaternion which is a rotation:
 Flip its real part: invert rotation
 Flip its imaginary part (conjugate): same
 Flip everything: same rotation

Every rotation is encoded
by two different quaternions q and −q.

62

63

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 3

Interpolating two quaternions
(that represent two rotations)

Good results, but two caveats:
 Take the “shortest path” (as usual):

flip 2nd quaternion first, if this makes them closer
 Distance defined as dot product in 4D

(consider quaternions as 4D unit vectors!)

 Loss of normality
 Needs re-normalization (NLERP),
 Or SLERP

(again, just consider quaternions as 4D unit vectors)

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k
gf

+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

64

65

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 4

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + v×w
,

h d – v∙w)

some vector

some scalar

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + w×v
,

h d – w∙v)

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

66

67

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 5

Quaternions as rotations

 Almost as compact as possible to store (4 scalars)
 Trivial to invert
 Fast to composite
 Fast to apply
 Easy to ensure they are still rotations (just normalize)
 Even after long sequences of cumulations, unlike matrices

 Behaves well under interpolation
 Even with just NLERP – better with SLERP

 The favourite representation in 3D games
 but, other solutions still useful in one context or another

Recap: representing rotations
1/2 3x3 Matrix Euler Angles

Space efficient?
(in RAM, GPU, storage…)

★☆☆☆☆ ★★★★★

Apply
(to points/vectors)

★★★★☆ ★☆☆☆☆

Invert
(produce inverse)

★★★★★ ★☆☆☆☆

Composite
(with another rotation)

★★☆☆☆ ★☆☆☆☆

Interpolate
(with another rotation)

★☆☆☆☆ ★☆☆☆☆

Intuitive?
(e.g. to manually set)

★★★☆☆ ★★★★★

Notes… Free extra shear + scale.
Useful to extract local axes.

easy to do, unintuitive result
(⚠ shortest-path required!)

requires trigonometry
sin/cos

9 products
(3 dot products)

just
transpose

9 scalars 3 scalars
(even as small int!)

roll
yaw
pitch

Matrix multipl
(9 dots)
Numerical errors

GIMBAL
LOCK

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

Introduces
shear/scale

⚠

68

70

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 6

Recap: representing rotations
2/2 axis * angle axis , angle

(unitary)

quaternion
Space efficient?
(in RAM, GPU, storage…)

★★★★☆ ★★★☆☆ ★★★☆☆

Apply
(to points/vectors)

★★★☆☆ ★★★☆☆ ★★★★★

Invert
(produce inverse)

★★★★★ ★★★★★ ★★★★★

Composite
(with another rotation)

★☆☆☆☆ ★☆☆☆☆ ★★★★★

Interpolate
(with another rotation)

★★★★★ ★★★★★ ★★★★☆

Intuitive?
(e.g. to manually set)

★★★☆☆ ★★★☆☆ ★☆☆☆☆

Notes… Typically used in physics.
two representations for each rotation
(for different reasons) (flip all no effect)
* Requires shortest path to interpolate

sometimes

requires trigonometry

3 scalars
(precision needed)

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

not really

just conjugate

super easy:
1 quat product

just 2 quat product

just flip axis or angle

easy* + good result
(except angular speed)

4 scalars
(precision needed)

just flip

sometimes

4 scalars
(precision needed)

easy + best result easy* + best result

requires trigonometry

And the winner is…

 Obviously, the quaternions
 because they are more efficient with each operation

 Obviously, the Euler angles
 because they are the most intuitive (and compact)

 Obviously, angle-and-axis
 because they have the best MIX (easy + most natural results)

 Obviously, the 3x3 matrices
 because they can also express (non uinf) scaling, and skewing
 because its three columns are the X, Y, Z axes

of the local space (useful)

72

73

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 7

Switching between representations

3×3
MATRIX

EULER
ANGLES

QUATERNION
rather trivial
(I expect you
to be able to!)

interesting
exercise
(try it, maybe)

AXIS
&

ANGLE

What defines a rotation, for you?

« Roll, pitch, and yaw! »
then you are… a pilot, or an astronaut

« X-angle, Y-angle, and Z-angle! »
then you are… a digital artist (an animator or a scener)

« An angle! »
then you are… a flatland citizen

« A vector! the dir is the axis the magnitude the angle »
then you are… a physicist

« A 3x3 matrix! the submatrix of a 4x4 transform »
then you are… a computer graphicist, or a Graphics API

« A quaternion! »
then you are… a game developer

74

75

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 8

GUI: how to author
rotations in 3D?

 Typical way: rotation gizmo
 (also: «arcball» or «trackball»)
 3 handles to control the three Euler angles
 or “free”, drag-n-drop mode (trackball metaphor)

convention: Red = X Green = Y Blue = Z

GUI: how to author
translations in 3D?

 translation gizmo
 handles to traslate along axes or planes

convention: Red = X Green = Y Blue = Z

76

77

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 9

GUI: how to author
scalings in 3D?

 scale gizmo
 3 handles for anisotropic scalings

1 handle (middle) for uniform scalings

convention: Red = X Green = Y Blue = Z

Rotations in Unity
(class Quaternion)

 In the GUI :
 See / set it

as Euler Angles (intuitive)

 Internally:
 A quaternion (class Quaternion)

 In the C# API:
 programmer choice: can initialize or use them as a …

quaternion, euler angles, axis+angle, or matrix
 thanks to C# «properties»

(setter/getter methods in disguise)
 gives the illusion to be whichever kind you think they are

using degrees, not radians
even more intuitive

78

79

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 10

Rotations in Unreal

Class FQuat :
 convert from:
 axis+angle, matrix4x4, FRotator, euler (vec3) (by constructors)
 Euler angles (makeFromEuler method)
 From-to vector pairs (FindBetween method)

 convert to:
 ToAxisAndAngle, Euler, Rotator,
 matrix columns GetAxis(X|Y|Z)
 also, with names: Get(Forward|Right|Up)Vector,

 methods: invert with Inverse,
blend with FastSlerp
or FastSlerpFullPath (no shortest path)
apply with RotateVector / UnrotateVector
composite with operator *

Class FRotator
for “nautical” Euler angles:
fields: Pitch Roll Yaw

fields: W X Y Z

Rotations in OpenGL

 In the «old school» API:
(and now in many similar libraries)
 API: glRotate3f
 takes: angle & axis

 Internally:
 matrices
 jointly as with any other spatial transform
 separated in MODEL+VIEW+PROJECT transform

80

81

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 11

Representations for
roto-rotations (notes)

 So far, we assumed that the rotation and
translation component of a transformations
are stored separatedly
 We have seen reasons why this is convenient

 There are a few representations which store
rotation and translation (roto-translations, aka
“rigid” transformations) jointly:
 4x4 matrices (we have seen the problem with them)
 Dual quaternsions

Representations for
rotations

 3×3 Normal Matrices
 Euler Angles
Angle & Axis
Quaternions

+ Translation
 (displacement vector)

 4×4 Matrices (or 3×4)
Dual Quaternions

roto-translations

OR:

aka “rigid” transforms

As there’s no need to store
the last row, it’s (0,0,0,1)

82

83

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 12

Why dual-quaternions?

 Problem with interpolating rotations and
translations separately:
 must choose “which one goes first”

(R then T, or, T then R)?
 Different choices → very different interpolation results
 Usually, neither is what you have in mind in all cases

 Dual quaternions = a better* math abstraction
to model roto-translations
 * better interpolation of roto-translations

Dual Quaternions in a nutshell 1/3

 Dual quaternions are a mathematical way to
represent a roto-translation (aka, a rigid motion)

 They produce a very good interpolation
between 2 (or N) roto-translations

 They are used in animation techniques
 See lecture about animations later

 This rest of this part of the course is optional
 (will not be asked at the exam)

84

85

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 13

Dual Quaternions in a nutshell 2/3

 New “fantasy” assumption: there is a ε such that
ε ≠ 0 , ε2 = 0

 A dual quaternion: p + ε q , with p,q ∈ ℍ

 So, eight scalars (a,b,c,d,e,f,g,h)
 weights for: 1, i , j , k , ε , εi , εj , εk

 a + b i + c j + d k + e ε + f ε i + g ε j + h ε k

quaternion set

p ε q
the “primal”
quaternion

the “dual”
quaternion

imaginary
part of p

imaginary
part of q

real part
of q

real part
of p

+

Dual Quaternions in a nutshell 3/3

 A dual quaternion p + ε q can represent:
 a point / vector in 3D , when p = 0 and Real(q) = e = 0

then Im(q) = (f,g,h) = (x,y,z)
 a roto-translation, when ‖p‖ = 1 and p·q = 0

then p is the rotational part
and q is the translational part

 (nothing, otherwise)

 To roto-translate a point a with roto-trans b
just “conjugate” their representations a’ ← b · a · b

dual-quaternion
conjugate

4D dot product

dual quaternion
multiplication

a + b i + c j + d k e + f i + g j + h

86

87

