
3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

Quaternions: exercises

 Which quaternion encodes a turnabout?
 (ita: «un dietrofront»: turning 180° around the up vector)

 Apply that quaternion to rotate a point in (x,y,z)
 Use plain quaternion algebra, and algebraic notation

 Which quaternion encodes the identity rotation?
 Is it the only one? If not, which other does?
 Verify by applying it (or them)

 Which quaternion encodes a turn of 90° to the left?
 Uses your previous two answers to find the quat.

encoding turn 45° to the left, by using interpolation
 Do you need SLERP in this case? Is NLERP enough? Why?
 Verify that the solution is correct using the axis-angle formula

60

61

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 2

3D Rotations as Quaternions:
equivalent representations
 Around axis aො by angle α :

q = sin
α

2
aො , cos

α

2

 Around axis −aො by angle (−α) : (it’s the same rotation!)

qᇱ = −sin
ି

ଶ
aො , cos

ି

ଶ
= q

Good! But:
 Around axis aො by angle (α + 360°) : (it’s the same rotation!)

qᇱᇱ = sin

ଶ
+ 180° aො , cos

ଶ
+ 180° =

= −sin

ଶ
aො , −cos

ଶ
= - q

 Conclusion:
quaternion q and quaternion −q encode the same rotation

same quaternion :-)

different quaternion :-(

3D Rotations as Quaternions:
equivalent representations

Given a quaternion which is a rotation:
 Flip its real part: invert rotation
 Flip its imaginary part (conjugate): same
 Flip everything: same rotation

Every rotation is encoded
by two different quaternions q and −q.

62

63

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 3

Interpolating two quaternions
(that represent two rotations)

Good results, but two caveats:
 Take the “shortest path” (as usual):

flip 2nd quaternion first, if this makes them closer
 Distance defined as dot product in 4D

(consider quaternions as 4D unit vectors!)

 Loss of normality
 Needs re-normalization (NLERP),
 Or SLERP

(again, just consider quaternions as 4D unit vectors)

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k
gf

+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

64

65

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 4

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + v×w
,

h d – v∙w)

some vector

some scalar

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + w×v
,

h d – w∙v)

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

66

67

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 5

Quaternions as rotations

 Almost as compact as possible to store (4 scalars)
 Trivial to invert
 Fast to composite
 Fast to apply
 Easy to ensure they are still rotations (just normalize)
 Even after long sequences of cumulations, unlike matrices

 Behaves well under interpolation
 Even with just NLERP – better with SLERP

 The favourite representation in 3D games
 but, other solutions still useful in one context or another

Recap: representing rotations
1/2 3x3 Matrix Euler Angles

Space efficient?
(in RAM, GPU, storage…)

★☆☆☆☆ ★★★★★

Apply
(to points/vectors)

★★★★☆ ★☆☆☆☆

Invert
(produce inverse)

★★★★★ ★☆☆☆☆

Composite
(with another rotation)

★★☆☆☆ ★☆☆☆☆

Interpolate
(with another rotation)

★☆☆☆☆ ★☆☆☆☆

Intuitive?
(e.g. to manually set)

★★★☆☆ ★★★★★

Notes… Free extra shear + scale.
Useful to extract local axes.

easy to do, unintuitive result
(⚠ shortest-path required!)

requires trigonometry
sin/cos

9 products
(3 dot products)

just
transpose

9 scalars 3 scalars
(even as small int!)

roll
yaw
pitch

Matrix multipl
(9 dots)
Numerical errors

GIMBAL
LOCK

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

Introduces
shear/scale

⚠

68

70

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 6

Recap: representing rotations
2/2 axis * angle axis , angle

(unitary)

quaternion
Space efficient?
(in RAM, GPU, storage…)

★★★★☆ ★★★☆☆ ★★★☆☆

Apply
(to points/vectors)

★★★☆☆ ★★★☆☆ ★★★★★

Invert
(produce inverse)

★★★★★ ★★★★★ ★★★★★

Composite
(with another rotation)

★☆☆☆☆ ★☆☆☆☆ ★★★★★

Interpolate
(with another rotation)

★★★★★ ★★★★★ ★★★★☆

Intuitive?
(e.g. to manually set)

★★★☆☆ ★★★☆☆ ★☆☆☆☆

Notes… Typically used in physics.
two representations for each rotation
(for different reasons) (flip all no effect)
* Requires shortest path to interpolate

sometimes

requires trigonometry

3 scalars
(precision needed)

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

not really

just conjugate

super easy:
1 quat product

just 2 quat product

just flip axis or angle

easy* + good result
(except angular speed)

4 scalars
(precision needed)

just flip

sometimes

4 scalars
(precision needed)

easy + best result easy* + best result

requires trigonometry

And the winner is…

 Obviously, the quaternions
 because they are more efficient with each operation

 Obviously, the Euler angles
 because they are the most intuitive (and compact)

 Obviously, angle-and-axis
 because they have the best MIX (easy + most natural results)

 Obviously, the 3x3 matrices
 because they can also express (non uinf) scaling, and skewing
 because its three columns are the X, Y, Z axes

of the local space (useful)

72

73

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 7

Switching between representations

3×3
MATRIX

EULER
ANGLES

QUATERNION
rather trivial
(I expect you
to be able to!)

interesting
exercise
(try it, maybe)

AXIS
&

ANGLE

What defines a rotation, for you?

« Roll, pitch, and yaw! »
then you are… a pilot, or an astronaut

« X-angle, Y-angle, and Z-angle! »
then you are… a digital artist (an animator or a scener)

« An angle! »
then you are… a flatland citizen

« A vector! the dir is the axis the magnitude the angle »
then you are… a physicist

« A 3x3 matrix! the submatrix of a 4x4 transform »
then you are… a computer graphicist, or a Graphics API

« A quaternion! »
then you are… a game developer

74

75

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 8

GUI: how to author
rotations in 3D?

 Typical way: rotation gizmo
 (also: «arcball» or «trackball»)
 3 handles to control the three Euler angles
 or “free”, drag-n-drop mode (trackball metaphor)

convention: Red = X Green = Y Blue = Z

GUI: how to author
translations in 3D?

 translation gizmo
 handles to traslate along axes or planes

convention: Red = X Green = Y Blue = Z

76

77

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 9

GUI: how to author
scalings in 3D?

 scale gizmo
 3 handles for anisotropic scalings

1 handle (middle) for uniform scalings

convention: Red = X Green = Y Blue = Z

Rotations in Unity
(class Quaternion)

 In the GUI :
 See / set it

as Euler Angles (intuitive)

 Internally:
 A quaternion (class Quaternion)

 In the C# API:
 programmer choice: can initialize or use them as a …

quaternion, euler angles, axis+angle, or matrix
 thanks to C# «properties»

(setter/getter methods in disguise)
 gives the illusion to be whichever kind you think they are

using degrees, not radians
even more intuitive

78

79

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 10

Rotations in Unreal

Class FQuat :
 convert from:
 axis+angle, matrix4x4, FRotator, euler (vec3) (by constructors)
 Euler angles (makeFromEuler method)
 From-to vector pairs (FindBetween method)

 convert to:
 ToAxisAndAngle, Euler, Rotator,
 matrix columns GetAxis(X|Y|Z)
 also, with names: Get(Forward|Right|Up)Vector,

 methods: invert with Inverse,
blend with FastSlerp
or FastSlerpFullPath (no shortest path)
apply with RotateVector / UnrotateVector
composite with operator *

Class FRotator
for “nautical” Euler angles:
fields: Pitch Roll Yaw

fields: W X Y Z

Rotations in OpenGL

 In the «old school» API:
(and now in many similar libraries)
 API: glRotate3f
 takes: angle & axis

 Internally:
 matrices
 jointly as with any other spatial transform
 separated in MODEL+VIEW+PROJECT transform

80

81

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 11

Representations for
roto-rotations (notes)

 So far, we assumed that the rotation and
translation component of a transformations
are stored separatedly
 We have seen reasons why this is convenient

 There are a few representations which store
rotation and translation (roto-translations, aka
“rigid” transformations) jointly:
 4x4 matrices (we have seen the problem with them)
 Dual quaternsions

Representations for
rotations

 3×3 Normal Matrices
 Euler Angles
Angle & Axis
Quaternions

+ Translation
 (displacement vector)

 4×4 Matrices (or 3×4)
Dual Quaternions

roto-translations

OR:

aka “rigid” transforms

As there’s no need to store
the last row, it’s (0,0,0,1)

82

83

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 12

Why dual-quaternions?

 Problem with interpolating rotations and
translations separately:
 must choose “which one goes first”

(R then T, or, T then R)?
 Different choices → very different interpolation results
 Usually, neither is what you have in mind in all cases

 Dual quaternions = a better* math abstraction
to model roto-translations
 * better interpolation of roto-translations

Dual Quaternions in a nutshell 1/3

 Dual quaternions are a mathematical way to
represent a roto-translation (aka, a rigid motion)

 They produce a very good interpolation
between 2 (or N) roto-translations

 They are used in animation techniques
 See lecture about animations later

 This rest of this part of the course is optional
 (will not be asked at the exam)

84

85

3D Video Games
04: Rotations 3/3

2021-03-23

Marco Tarini
Università degli studi di Milano 13

Dual Quaternions in a nutshell 2/3

 New “fantasy” assumption: there is a ε such that
ε ≠ 0 , ε2 = 0

 A dual quaternion: p + ε q , with p,q ∈ ℍ

 So, eight scalars (a,b,c,d,e,f,g,h)
 weights for: 1, i , j , k , ε , εi , εj , εk

 a + b i + c j + d k + e ε + f ε i + g ε j + h ε k

quaternion set

p ε q
the “primal”
quaternion

the “dual”
quaternion

imaginary
part of p

imaginary
part of q

real part
of q

real part
of p

+

Dual Quaternions in a nutshell 3/3

 A dual quaternion p + ε q can represent:
 a point / vector in 3D , when p = 0 and Real(q) = e = 0

then Im(q) = (f,g,h) = (x,y,z)
 a roto-translation, when ‖p‖ = 1 and p·q = 0

then p is the rotational part
and q is the translational part

 (nothing, otherwise)

 To roto-translate a point a with roto-trans b
just “conjugate” their representations a’ ← b · a · b

dual-quaternion
conjugate

4D dot product

dual quaternion
multiplication

a + b i + c j + d k e + f i + g j + h

86

87

