
3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Reminder: inverse of a composite
transform (or, in general, function)

 The inverse of “first Ta then Tb” is
“the inverse of Tb” followed by “the inverse of Ta”

 As it’s natural! If you…
 “take a step forward,

then, turn by 90° clockwise”

…then, to go back to the starting pos, you need to…
 “turn by 90° counter-clockwise,

then, take a step backward”

(TB TA)⁻¹ = TA⁻¹ TB⁻¹

23

24

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 2

The camera in the scene graph

 Camera:
 Like any other object in the scene, the camera sits in a node the

scene-graph
 for the scene to be rendered, there must be a camera

somewhere in the graph!
 View Space = Local Space of the camera
 (Screen Space is a similar, and sometimes equivalent, concept)

 the View Space is crucial for the rendering engine
 In view space, coordinates describe where things are in front of

the camera!
 For example: z > 0 ⇒ in front of the camera,

z<0 ⇒ behind the camera (don’t render)
 Camera animations = move camera

 by anything that changes its global transformation
 e.g. a script changing its local transform, or the one of it’s parent

The camera is in the scene graph

T0
T1

T2

T3 T4 T5 T6

camera

T8

E.g.: to make the camera follow the car…

Player’s
car

How the
camera is

placed
w.r.t the car

25

26

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 3

Transforms for the Graphics engine
(link to Computer Graphics course)

 The rendering engine uses a few standard
transformations, when rendering an object,

 They are named:
 “Model” matrix: from object space to world space

 Captures how the scene is modelled (by a scener)

 “View” matrix: from world space to view space
 Captures how the scene is viewed (by the camera)

 “Model-View” matrix: from object space to view space
 (“matrix” only because trasnforms are usually modelled as

4x4 matrices by Rendering engines & graphics APIs)

 Computing them from the scene graph is easy

Transforms for the Graphics engine

T0
T1

T2

T3 T4 T5 T6

camera

T8

Player’s
car

“Modelling”
transform:

T0 ∘ T3

“View”
transform:
(T2 ∘ T8)⁻¹

=
T8⁻¹ ∘ T2⁻¹

27

28

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 4

Transforms for the Graphics engine

T0
T1

T2

T3
T4 T5 T6

camera

T8

Player’s
car

“Model-View” transform: T8⁻¹ ∘ T2⁻¹ ∘ T0 ∘ T3

Authoring a 3D scene in a game

 E.g. as a part of the Level Design
 Two different parts, by different artists:
 3D modellers make «scene props»

 the 3D models to be assembled

 (including their texutres etc)

 sceners compose the scene
 they assemble the props into a Scene Graph

= asset

29

33

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 5

Authoring a 3D scene

 Examples of other assets associated to a scene
 a Collision Mesh (a Geometry Proxy)

 one for each “solid” scene-prop
 can this be made automatic? Possible, not easy
 assigned to nodes (for dynamic objects),

or (for static objects) possibly all merged into one
 needed for: physics, visibility computation, AI,

plus all sorts of gameplay reasons…

 a Navigation Mesh (aka AI mesh)
 usually, one for the entire scene (stored in the root node)
 needed by: AI (routing – see later)
 can this be made automatic? Possible, not tribial

Authoring a 3D scene

 Examples of other assets associated to a scene:

 Scripts
 by the level designer

 Sky box

 Outer terrain mesh…

 Ambient sounds

 Other data such as spawn points, and more

34

35

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 6

Scene Graph as a data structure

 Each engine / library adopts its own solution
 No standards

 but file formats exists which can include a scene graph:
e.g. COLLADA

Typical concepts:
 each Node class stores

 the local transform
 link to parent
 maybe, and/or to children, sibilings…)
 links to instances / assets

 global transforms / inverse are computed on demand
 some mechanism is used for repeated sub-trees

Example: a dining table

36

37

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 7

World
(scene)

Pair
of Plates

GlassKnife Fork …

Chair
Dining

set

Table
furniture

Set
Table

Dining
room

Seat Seat …

Set
Table

Light
array L 6 walls

Light
array R

L0 L1 L2 …

Example: a dining table

38

39

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 8

Nodes of a scene-graph in unity
GameObjects & Transforms

A node = a GameObject with
 a transform field, containing

 its local transform
 links to Parent, Children (and siblings) – which are transforms

 any number of associated “components”,
which represent anything residing in that node, like
 Meshes (to display at this nodes)
 Cameras: active one(s) produces the rendering(s)
 “RigidBodies”: objects controlled by the physics
 “Colliders”: geom proxies used for collisions
 “Particle systems” : (i.e. the “emitters” of particles)
 Sound producers / receivers
 Scripts …
 basically any asset!

 The Transformation actually stores the local transf:
 localPosition, localRotation, localScale
 goes from a node to its parent

 the Global transformation can be accessed
via the properties:
 position, rotation, scale

(“global” is left implicit)
 what does getting / setting them really do? (exercise)
 this it doesn’t always work for “scale”:
scale lossyScale (read only)

Why? (A: it’s because anisotropy)

Nodes of a scene-graph in unity
GameObjects & Transforms

feels like
assigning / reading a field,
actually means invoking
setters/getters (C# trick)

40

42

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 9

Digression on
properties and components

 In C#, a property has a syntax making it look
like a field (you can read or assign it)
but it’s actually getter and setter methods
 obj.xx = 3 …means… obj.set_xx(3)

 foo = obj.xx …means… foo = obj.get_xx()

 In Unity, a component is a generic something
attached to a GameObject
 GameObject g;
g.getComponent< type >()
returns component of required type
(if it exists)

base class
for everything
in the game

Nodes of a scene-graph in Unreal
USceneComponent

A node within a graph with:
 link to parent / children:
 getParentComponents
 getChildComponent(index)

 associated stuff to it:
UPrimitiveComponent (subclass)
 for models, physical bodies, etc

 Local Transform: (fields)
 RelativeLocation , RelativeRotation, RelativeScale

 Global Transform: (methods)
 GetComponentTransform() /* return transformation */

43

44

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 10

A demo with Unity

Mechanisms for
common shared subtrees

 In Unity: see “Prefabs”
 In Unreal: see “BluePrints”

45

46

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 11

Drawing for the exercises

world

B

E
F

G

T0 T1
T2

T3

T4

T5

T6

DC

H

L

T7

Drawing for the exercises

world

B

E
F

G

T0 T1
T2

T3

T4

T5

T6

DC

H

L

T’7

47

48

3D Video Games
05: Scene Graph 2/2

2021-03-25

Marco Tarini
Università degli studi di Milano 12

Exercises 1/2

What is the new transform T’7 which should subtitute T7 if…
 …node L il reattached as a child of D, leaving its position in

world space unaffected (e.g. by a scener, or a script)
 …node D is attached under node L, without affecting its world

space position.
 …the object in node L must be moved 1 unit on the right in

view space (camera is in node C)
 …the object in node L must be moved by 1 unit ON ITS RIGHT

(i.e. that object in must be displaced by a new transform T
applied in post-transform space)

Note: these kinds of problems are silently solved by Unity all the
times (in the scripts & when user manipulates the the GUI)

Exercises 2/2
 Report the global transform of node L
 I place a camera in node H:

report the View Transform for this scene
 What does it mean to apply a translation (0,2,0) to L …

1. in L Space (the local space of L)?
2. in World space?
3. in View Space?

 Say T7 is the identity, and the camera is in H:
how to modify T7 to get the case 1,2 or 3?

 Find the origin of space E in space H, and viceversa
 A microfone is in (the origin of) node E, and a speaker is in (the

origin of) node H. Find the distance from the mic to the speaker

49

50

