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3D video games

3D Game Physics
Marco Tarini

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph ◗

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques
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Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on 
artist’s skill

 Does not adapt to 
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven 
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a note on terminology: 
in some contexts, procedural means 
“produced by a simple procedure” 
as opposed to “physically simulated”

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 (not necessarily accuracy)

 robustness
 (should almost never “explode”)
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Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)
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Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D

Physics engine:
intro

 Game engine module
 executed in real time at game run-time

 A high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 potentially, highly parallel

==> good fit for hardware support 
( just like the Rendering Engine)
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Hardware for 
Physics engine

 For a brief moment ~2006: PPU
 “Physics Processing Unit”
 HW unit specialized for physics

 Then: GP-GPU
 “General Purpose Graphics Processing Unit”

 Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 Ex.: Cuda (nVidia)

To exploit a strong parallelism, 
you need a strongly parallel hardware!

Main Software (libraries, SDK)

open source, free,
HW accelerated (OpenCL) + CPU

open source, free

mostly CPU 
(Microsoft)

CPU+GPU
(CUDA) NVidia

2D, open source, free
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Brief history

Lots of AAA
3D Games

by

VPhysics

etc
(in Maya
as a plugin,…) Lots more of AAA

3D Games

Brief history

…
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Fields of study

 Dynamics
 The motion, as a result of forces
 “Subject to gravity, how will this pendulum swing?”

 Statics
 Equilibrium states, energy minimization states
 “In which state(s) can this pendulum be still?”

 Kinematics
 The motion itself, irrespective of why it’s moving
 “If the angular speed of the pendulum is currently X, 

how fast is the tip moving?” (or vice versa)

The 2 tasks of the Physics engine

1. Dynamics (Newtonian)
for objects such as:
 Particles
 Rigid bodies
 Articulated bodies

 E.g. “ragdolling”

 Soft bodies
 Ropes (specific solutions)
 Cloth (specific solutions)
 Hair (specific solutions)
 Free-form deformation 

bodies (general)

 Fluids
 Expensive!

2. Collision handling
 Collision detection
 Collision response
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Newtonian 
Dynamics

 The one with:
 Masses
 position and its derivative: velocity
 and momentum

 direction and angular velocity 
 and angular momentum

 forces  acceleration…

Reminder:
Spatial placement of an object
2D Physics

 Position: 
(x,y)

 Orientation: 
(α) – angle (scalar)

3D Physics

 Position: 
(x,y,z)

 Orientation: 
quaternion or

axis,angle or

axis * angle  or

3x3 matrix or

Euler angles
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Newtonian dynamics: summary

Actual
object
location

Rate of change
of 

(d / dt )

 “with mass”

(momentum)

What changes the
rate of change

(d2 / dt2)

 “with mass”

Position  𝑝

𝑝 = (x,y,z)

Velocity  𝑣

𝑣 = 𝑝̇

( |𝑣| = “speed”  )

Momentum

𝑣 ȉ 𝑚

Acceleration

𝑎⃗ = 𝑣̇ = 𝑝̈

Force 𝑓

𝑓 = 𝑎⃗ ȉ 𝑚

Orientation

(e.g. quaternion)

Angular velocity  𝜔 Angular momentum

𝜔 ȉ 𝐼

𝐼 = moment of inertia 
(for axis)
(“rotational inertia”)

Angular acc. α Torque τ

τ = 𝑎⃗ ȉ 𝐼

(“mechanic 
momentum”)

Change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)

Per-object constants

A few quantities associated to each object
 constants: they don’t (usually) change
 input of the physical dyniamics simulation, not output

 Mass:
 resistance to change of velocity 

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of mass
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Mass: notes

 resistance to change of velocity 
 inertial mass

 also, incidentally: 
ability to attract every other object
 gravitational mass
 happens to be the same

 it’s what you measure with a scale
 Unity of measure:

kg, g…

Moment of inertia: notes 1/2

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low
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Moment of inertia: notes 2/2

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the mass, and on its distribution

 the farthest one sub-mass from the axis, the > the resistance
 In 3D: it’s different for each axis of rotation

 It can be computed for any axis, thanks to…
 Moment of inertia as a 3x3 Matrix
 a matrix A used to extract that scalar, for any given axis
 given an axis a (a = unit vector), the moment of inertia is

aT A a
 matrix A can be computed, once and for all, for a rigid object

 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or sum the contributions for each sub-mass

Barycenter: notes

 Aka the center of mass
 a position

 In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
 literally “weighted”: with their masses

 Does not necessarily coincide with 
the origin of the local frame of that object
 but it can and often will
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State of a rigid object 
in a physical simulation

current

current rates of change

constants

updated
by
physics 
(dynamics)

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

setup at initialization,
(rarely) changed
e.g. by scripts

Note: acceleration/forces/torques are 
not part of the state

frictions; 
see later

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

Adding a “RigidBody” component 
to a Game Object is to say:
“please let the Phys. engine take care 
of this object”

bool isKinematic
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In                     (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Vector3 angular_velocity

float mass

Vector3 centerOfMass

float drag 

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D 
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter (in local space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame!)

bool isKinematic
if true: disable dynamics 
(but keeps e.g. collisions)

State of a point-particle
in a physical simulation

not used !

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

One trend in game phys engines is to 
simulate point-particles only.

Much simpler: no rotation needed!

We will see later how to still get rigid 
bodies back.

For now, we focus on this simpler case.
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Dynamics (Newtonian)

0

0

function( ,...)
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
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  

  
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


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

describe the forces
given the particle positions (and more)

Dynamics (Newtonian)












dtvpp

dtavv

mfa

pfunf


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

0
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acceler.
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positions
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An (obvious) precisation

 =  virtual time != real time
 e.g.: 

 game paused  t costant. 
 Fast forward, replay, 

rallenty, reverse  change of speed/flow direction of t

occasionally, 
gameplay exploit this difference in spectacular ways!

PoP – the sands of times serie  (Ubisoft, 2003-…) Braid (Jonathan Blow, 2008)

Ct
Wall time

Computing physics evolution

 Analytical solutions:

state = function( t )

Given force functions (and acc), find 
the functions (pos, vel,…) in the 
specified relations:

 Numerical solutions:

1. state( t = 0) init
2. state( t + 1)

evolve( statet )

3. goto 2













C

C

t

C

t

C
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dttvptp
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tpfunztf

0

0

0

0

)()(

)()(

/)()(

),...)(()(








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Analytical solutions

0

0

0

0

( ) function( ( ),...)

( ) ( ) /

( ) ( )

( ) ( )

C

C

C C

C C

t

C

t

C

f t p t

a t f t m

v t v a t dt

p t p v t dt





  

  









  



pos, acc, vel, forces:
in function of
current time Ct

Analytical solutions

଴

଴

given

that is, find positions as functions of time 𝑡
such that…

sometimes, 
a function of 
other things too
(e.g. velocity). 
Harder to solve!

the initial conditions
(we want to find their evolution!)

a given function returning, the forces
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Numerical integration

 A numerical integrator computes the integral as 
summed area of small rectangles
 For a physics engine, this means just updating velocity and 

positions at each physics step

 A crucial parameter is the width of the rectangles i.e.
dt = the duration of the physics step (in virtual time)
 If physics system perform N steps per second: 

dt = 1.0 sec / N
 N is not necessarily same rendering frame rate

e.g.: rendering 30 FPS but physics: 60 steps per seconds
 dt is not necessarily constant during the simulation

(but in most system, it is)

Simple example: 
analytical solution











y

x

v

v
v0













0

0
0p












8.9

0
mf



x

y
in this specific case,
acc is a constant
(does not depend on pos)

«ballistic shooting»
of a mass,
in 2D, ignoring friction...
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Simple example: 
analytical solution

Solving…
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
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Simple example: 
analytical solution

Final result:


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

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
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



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
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



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Numerical methods: features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate
 must be at least plausible

 (if stays plausible, differences from reality are acceptable)
 How robust
 rare completely wrong results

 (and never crash)
 How generic
 Which phenomena / constraints / object types is it able to 

recreate?
 requirements depend on the context (ex: gameplay)

Euler integration methods

(1) Evaluate the force
(on each particle)
as a function of position
(even of other particles)

(2) acceleration
of each particle given by:
forces on it and its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state / variables) , (temp variables)

For each step:

଴

଴

Assumption: a 
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Euler integration methods

init 
state

one 
step dttt a ← f⃗ /𝑚

p ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

𝐩 ← ⋯

v ← ⋯

Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ = 𝑓/𝑚
𝑣⃗௜ାଵ = 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ = 𝑝௜ + 𝑣⃗௜ ⋅ 𝑑𝑡
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Simple example: 
numerical solution




















4

2
0

y

x

v

v
v












0

0
0p












1

0
mf



x

y
constant 
(in this specific case not
dependent from pos)

Same phenomena
of previous example

𝑑𝑡 = 1 sec

here, for instance,

Simple example: 
numerical solution

init

Time: 0 1 2 3 4 5 6 7 …

vel: (2,3) (2,2) (2,1) (2,0) (2,-1) (2,-2) (2,-3) (2,-4) …

pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0) …

x

y

0

1

2
3 4

5

6

7

step step step step step step step step

𝑓 = 𝑚 ⋅
0

−1

𝑎⃗ = 𝑓/𝑚

𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡

𝑝 = 𝑝 + 𝑣⃗ ⋅ 𝑑𝑡
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Physics evolution computation

 Analytical solutions:  Numerical solutions:

x

y

0

1

2
3 4

5

6

7

x

y

𝑝௫

𝑝௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠(𝑡𝑖𝑚𝑒)

𝑣௫

𝑣௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑣𝑒𝑙(𝑡𝑖𝑚𝑒)

Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 formulas found 

case by case
(often not existing!)

 NO
(but, for instance, useful to 
allow the AI to make 
predictions)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 YES
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Integration errors 

 A numerical integrator only approximates 
the real value of the integrals

 The discrepancy (simulation errors) accumulate 
with virtual time
during all the simulation

 How much error is accumulated? 
 It depends on  dt !
 Small dt ⇒ more steps needed (for same virtual time)

⇒ more computationally expensive, 
but smaller errors,  i.e. more accurate simulation

Order of convergence

 How much does the total error decrease
as dt decreases?
 That’s called the Order of the simulation

 1st order: the total error can be as large as O( dt1 )
 “if the number of physics steps doubles

(physical computation effort doubles)
dt becomes halves and errors can be expected to halve”

 The error introduced by each single step is O( dt2 ),

 The Euler seen is 1st order
 This is not too good, we want better
 Note: The error is usually not that bad as linear with dt, 

but they can be
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The integration steps dt of
any numerical methods (summary)

dt : delta of virtual time from last step 
 the “temporal resolution” of the simulation!

 if large: more efficiency
 fewer steps to simulate same amount of virtual time

 if small: more accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 …  1 sec / 30
 i.e. a step simulates around 16 … 32 msec. of virtual time
 note: it’s not necessarily the same refresh rate of rendering 

(FPS of rendering ≠ FPS of physics. Rendering can be less!)
 note: di dt is not necessarily the same in all physics steps

(need more accuracy now? Decrease dt

number of physics 
steps per sec, or 
«physics FPS»
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