3D Video Games

05: Game Physics - Dynamics 2/3

2021-04-08

lec.
lec.
lec.
lec.
lec.
lec.
lec.
lec.
lec.
lec. 10:
lec. 11:
lec. 12:

9:

O N DU WwN R

Course Plan

Introduction @

Mathematics for 3D Games @@ ®®®(
Scene Graph D@

Game 3D Physics @7 @ + @4

Game Particle Systems ¢

Game 3D Models @4

Game Textures @d

Game 3D Animations @@ @®

Game 3D Audio @

Networking for 3D Games @

Artificial Intelligence for 3D Games @
Game 3D Rendering Techniques @ @

58

Euler integration methods

init P
5
state vV

e
e

e
< fun(p, ...)
<—f/m
—p+v-dt

Ve—v+a-dt

N

one
step

"o o =

t=t+dt

59

Marco Tarini

Universita degli studi di Milano

3D Video Games
05: Game Physics - Dynamics 2/3

Marco Tarini

g
Forward Euler pseudo code "'1,.';1?’-

Equivalent to...
fi = function(pi,...)

Vec3 position
Vec3 velocity

void initState () { a=f/m
position = .. Vig1 =V +a;-dt
} velocity = .. Di+1 = Di + 7K dt
void physicStep(float dt)
{
Vec3 acceleration = compute_force(position) / mass;
position += velocity * dt;
velocity += acceleration * dt;
}

void main () {
initState() ;
while (1) do physicStep(1.0 / FPS);

}
60
r W
Forces o
= 0 "’Igl_
f =function(p , ...) '
e Forces are often a function of current positions
e But not always
e Examples:
e Gravity
e Constant, near the surface of a planet
e But, function of positions in a space simulation
e Wind
e Depends on the area exposed in the wind direction
Electrical / magnetic forces
Archimede’s buoyancy
e Depends on the weight of the submerged volume
e Mechanical springs
e simple model: hooke’s law — see later
shock waves (explosions)
Fake / “Magic” control forces
e added for controlling the evolution of the system,
not physically justified
61

Universita degli studi di Milano

2021-04-08

3D Video Games

05: Game Physics - Dynamics 2/3

Forces Wl

-

f = function(p,...)

e Forces are often a function of current positions
e Not always
e Real-world forces can be modelled by things that aren’t “forces”:

e Frictions
e In reality: a force in the opposite direction of motion

e |ts magnitude is proportional to speed (f is a function of p : difficult to solve!)

e Can be modelled with velocity drag / damp (see later)
e Impacts & other violent things

e In reality: very short, very strong forces

e Duration << dt

e Must be modelled with impulses (see later)
e Resistance forces

e E.g.: what prevents your computer to fall through the table
E.g.: what prevents a pencil to contract when you push it on the paper
In reality, an internal force that contrast an external force (such as gravity)
Necessary to model “rigid bodies” and solid bodies
Must be modelled by positional constraints (see later)

62

Forces: control forces RS

e Example: the player pressing the forward button
= a forward force is applied to his/her avatar
e no physical justification
e “Don’t ask questions, physics engine”
e According to many:
it’s better when that’s not done much
e the more physically justified the forces, the better

e for example: does the car accelerate...
because a torque is appied to its two traction wheels VS
because a force is applied to its body

e usually much harder to cortrol

e see also: gameplay VS cosmetics, control VS realism,
emerging behaviours

63

Marco Tarini

Universita degli studi di Milano

2021-04-08

3D Video Games
05: Game Physics - Dynamics 2/3

Forces: Springs
(Hooke’s law)

e Simplified model for elastic springs

e One spring connects two
particles in Pa and Pb

e Characterized by:
1. Restlength ¢
2. Stiffness k

e Srping force:
counteracts stretching ¢ _
and compression ® Lok

fy=-fa

—lpp — Pa||)m

Py — Pa

65

Forces: springs friction

e A dissipative force
e Damping factor kp

e Wants to slow down
elongation / shrinking

P» — Pa

g= P2 Pa_
1> — Pel

fo = kp(d- (B — 7)) d

66

Marco Tarini
Universita degli studi di Milano

2021-04-08

3D Video Games
05: Game Physics - Dynamics 2/3

Mass and Spring systems

e Useful for deformable objects
e for instance: elasitic ropes (or hairs)

/
Extra springs, /
to model resistance
to bending
67
Mass and Spring systems
e Forinstance: cloth
by Blizzard En‘t‘ertainm;nt ,‘\
68

Marco Tarini
Universita degli studi di Milano

2021-04-08

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

a,
Mass and Spring systems "u“..,_';ﬁ
can model...

e Elastic deformable objects (aka “soft bodies”)
e Elastic = go back to original shape
e Easily modelled as compositions of (ideal) springs.
e Plastic deformable objects? (yes, but not easy)
e Plastic = assume deformed pose permanently

e Dynamically change rest-length L in response to large
compression/stretching, in certain conditions (not easy)

e Rigid bodies / inextensible ropes ? (they can’t)
Increase spring stiffness? k — oo

Makes sense, physically, but...

Large k = large f = instability = unfeasibly small dt needed
Doesn’t work. How, then? see later

69

}I_ !
Continuity of pos and vel 'i'.,.';??“

e In real Newtonian physics the state
(pos and vel) can only change continuously
e No sudden jump!
e |n practice, sometimes is useful to artificially
break continuity in the simulations
e Discontinuous changes:
e in positions: “teleports”
e invelocity: “impulses”
e (those are not necessary variations justified by forces)

70

Marco Tarini
Universita degli studi di Milano 6

3D Video Games
05: Game Physics - Dynamics 2/3

2021-04-08

Dynamics displacements
VS kinematic
p=p+V-dt p=p+dp .
\\

\
aka dynamic aka Kinematic \\
displacements displacements ’
(justified by the just |
physics) “teleportation” 3»

|
‘ direct and discontinuous change of state (position) }/
71
Impulses VS Forces s
[a discontinuous change of state (velocity)! j
5= +(7/m) -de 5=+ /m)
e Forces (continuous) e Impulses
e Continuous application e Infinitesimal time
e every frame ® unatantum
they model very intense but
short forces
(such as impacts)
72

Marco Tarini
Universita degli studi di Milano

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

Impulses VS Forces b

e force:
e it determines an acceleration
e acc determines a (continuous!) change of vel
e physically correct

e Impulse:
e a(discontinuous!) change of vel
e useful to control a simulation (direct change of velocity)
e a physical interpretation: a force with:
e application time approaching zero
e magnitude approaching infinity
e Useful to model phenomena with a time scale << dt
e ex: a tennis ball rebounding against a tennis racket

73

-:F

Impulses VS Forces -

e what does truly happen when it bounces off the ground?

3]l

0 msec 1 msec 2 msec 3 msec 4 msec

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse based approximations

75

Marco Tarini
Universita degli studi di Milano 8

3D Video Games
05: Game Physics - Dynamics 2/3

Marco Tarini

det
Impulses VS Forces i

e what does truly happen when it bounces off the ground?

no impact huge no impact
force force force
- N \{_H/ N N
—ﬁéﬂiﬂ—
dt

e This can only be modelled as an impulse, not a force
e See also collision response, later

76

%
Effect of integration errors ‘R,SF

of System Energy

e Because integration errors:
simulated solutions # “real” solutions
e In areal system, the total energy cannot increase.
e Usually, it decreases over time, due to dissipations
e That is, attrition turns dynamic energy into heat
e Therefore, a particularly nasty integration error is when
the total energy of the system increases over time
e e.g.:apendulum swings faster and faster
e Particularly bad because:

e Compromises stability
(velocity = big, displacements = crazy, error = crazy)

e Compromises plausibility
(we can see it’s wrong)
e Therefore, a simple way to avoid this:
make sure the simulation always includes attritions
e makes simulation more stable + robust

77

Universita degli studi di Milano

2021-04-08

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

.]
Damping VS W
attrition forces

e We can include attrition as forces in our system
e direction: opposite of current velocity direction

e magnitude: proportional to a constant, and to speed
(speed = magnitude of velocity vector)

e note: so this force depends on velocity, not just positions.
e This is the most correct way to model attrition

e Huge simplification: model attrition as
“velocity damping”
e simply, we reduce velocity vectors by a fixed proportion
e e.g. reduce them all by 2% (drag = 0.02)

e makes sense!
Higher speed = more attrition = more loss of speed.
Attrition = a “fixed tax” on speed.

78
. : p W
Velocity Damping: the math A
e | want to decrease velocity of a percentage
for every second of (virtual) time
e e.g.:if 2% then Drag=0.02
1/FPS sec
e how should | update velocity for at every dt ?
Ve—V-(1-Drag)*®
e for small enough Drag, this is well approximated by
V—V-:-(1—-dt-Drag)
79

Marco Tarini
Universita degli studi di Milano 10

3D Video Games
05: Game Physics - Dynamics 2/3

2021-04-08

Velocity Damping:
pseudo-code

Vec3 position
Vec3 velocity

void initState() {
position = ..
velocity

}

void physicStep(float dt)

{
Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;

velocity *= (1.0 — DRAG * dt);
}

void main() {

initState();

while (1) do physicStep(1.0 / FPS);
}

80

Velocity Damping: notes

e Velocity Damping is useful for robustness,
e avoids energy to increase

e Problems of Velocity Damping

e tends to exaggerate frictions;
even when it makes sense, e.g. in space, no air

e It's attrition with everything...: air, soil.

e |n practice:

everything quickly grinds to a halt

e Crude approximation: attrition forces are not really linear with speed

e Isotropic force: in reality, attrition force depends of velocity direction

e low values: hardly noticeable (except in the long run)
e high values: feels like everything is moving in molasses; (ita: melassa)

e very high values: (e.g. 50% per frame) basically, no inertia anymore
(useful to quickly converge to (local) minimal energy states:
becomes basically a solver for static problems, not of dynamics)

81

Marco Tarini
Universita degli studi di Milano

11

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

Other numerical integrators s
(“numerical ways to compute integrals”)

e Some commonly used alternatives:

e “Forward” Euler method (the one seen so far)

e Symplectic Euler method

e Leapfrog method

e Verlet method
e These are just variants of each other — let’s see them!
From the code point of view, no big change

They can differ in accuracy / behavior

E.g. order of accuracy

Note: a more accurate method is also more efficient
(larger dt are possible, so fewer steps are necessary)

82

8
Forward Euler Method: limitations ~ #35

e efficiency / accuracy: not too good
e error accumulated over time = linear in dt
e it'sonly a “first order” method

e Doubles the steps = halve the dt, only halves the errors
(can be better, but no guarantees)

e in practice, scarce stability for large dt

e minor problem: no reversibility, even in theory

e real Newtonian Physics is reversible:
flip all velocities and forces = go backward in time.

e In our simulation (with Euler): this doesn’t work exactly

e Ability to go reverse a simulation would be useful in games!
E.g. replays in a soccer game ?

e Pro tip: basically, reverse time direction never done like this
To go backward in time accurately, store states

83

Marco Tarini
Universita degli studi di Milano 12

3D Video Games
05: Game Physics - Dynamics 2/3

Marco Tarini

h ol
Forward Euler '..,:7’-
init P € oo
state V — e
f < fun(p,..)
5222 a<f/m t=t+dt
p—p+v-dt
Vev+a-dt
N
84
: Y
Symplectic Euler vtf.,f,L_E
init P < e
state Ve e
f < fun(p,..)
one o r
step a<f/m t=t+dt
Vev+3a-dt
pe—p+v-dt
N
85

Universita degli studi di Milano

2021-04-08

13

3D Video Games
05: Game Physics - Dynamics 2/3

Marco Tarini

Forward Euler pseudo code

Equivalent to...
fi « function(py,...)

Vec3 position
Vec3 velocity

d; «
void initState () { a < f/m
position = .. Vig1 <V +a; - dt
velocity = .. Div1 <D + ﬁi . dt

}

void physicStep(float dt)

{
Vec3 acceleration = compute_force(position) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main () {

initState() ;

while (1) do physicStep(1.0 / FPS);
}

86

.ll_, ‘I'
Symplectic Euler pseudo code n..,:,i

(aka semi-implicit Euler)

Equivalent to...
fi « function(py,-..)
void initState () { a; < f/f” R
position = .. Vigp <V +a; - dt
velocity = .. Pir1 < Pi + Vgpq - dt
} :\
void physicStep(float dt)
{

Vec3 position
Vec3 velocity

Vec3 acceleration = compute_force(position) / mass;

@ velocity += acceleration * dt; st flio th g
position += velocity * dt; Just1lip the order
}

void main () {

initState() ;

while (1) do physicStep(1.0 / FPS);
}

87

Universita degli studi di Milano

2021-04-08

14

3D Video Games
05: Game Physics - Dynamics 2/3

|

Forward Euler VS Symplectic Euler ;._,_}-
(warning: over-simplifications)

e From the code point of view, they are very similar

e The semantics changes:

e in Symplectic Euler
the position altered using next frame velocity

7 “"

e (it's “wrong”, in a sense — but works better)

e Similar properties, but better in practice
e Same order of convergence (still just one ®)
e On average, better behavior
e More stable, more accurate

89

%l
Leapfrog Integration n.,,}

90

Marco Tarini
Universita degli studi di Milano

2021-04-08

15

3D Video Games
05: Game Physics - Dynamics 2/3

Leapfrog Integration

25

G

t (inap

91

Leapfrog Integration
first step

0.0 0.5 1.0

1.5

2.0

25

e

t (inap

Do
aJ/

a=f(py,)

Vo5 =V, +d-dt)2

92

Marco Tarini
Universita degli studi di Milano

2021-04-08

16

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

Leapfrog Integration

Dy =Dyt V,s-dt Py =p tV5-dt D3 =D, +V,s-dt

a=f(p, .. a=f(p,, ..

Vis=Vysta-dt V,s=V +a-dt

93

Leapfrog method: pros and cons

e Same cost as Euler —and basically same code

e Velocity stored in status = velocity “half a dt ago”
(and after updating it: “half a frame in the future”)

e Only real difference: the initialization of speed
Better theorical accuracy, for the same dt

e better asymptotic behavior:
it’s a second order instead of first!

e cumulated error: proportional to dt? instead of dt
e error per frame: proportional to dt3 instead of dt?
Bonus: fully reversible!

e (intheory only. Beware e.g. floating point errors)
But: requires fixed dt during all the simulation
e forthe theory to work as advertised

94

Marco Tarini
Universita degli studi di Milano 17

3D Video Games

05: Game Physics - Dynamics 2/3

e |t’s defined from:
e current pos Prow

e last pos Pord

Verlet integration method

e |dea: remove velocity from state

s . db
M. Prnow
®

Poia

e Current velocity is implicit

which we need to record

Pnow = Poia T v - dt
—
UV = (Pnow — Poia)/dt

<]; Euler & variants

<]; Verlet

95
. . ll— r
Verlet integration method t.,.';??’_&
init Pnow =
state. Pora = - - -
I)
f=]:unCt(pnowr)
a= m expanding
one f/ this...
step V= (Prow — Poia)/dt
vV=v+d-dt
Prext = Pnow + V- dt
N J
96

Marco Tarini

Universita degli studi di Milano

2021-04-08

18

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

., p
Verlet integration method "u“..,_';ﬁ-
init Pnow < .-

state Poid < +--

f funct®pow) 7
one g« f/m

Poid < Pnow
Pnow < Pnext

step Pnext < 2pnow — Pola + a- dtz j
97
L. %
Verlet: characteristics F

e Velocity is kept implicit
e but that doesn’t save RAM:
we need to store previous position instead

e Good efficiency / accuracy ratio

e Per-step error: linear with dt

e accumulated error: order of dt? (second order method)
e Extra bonus: reversibility

e it's possible to go backward in t and
reach the initial state from any state

e onlyin theory... careful with implementation details

98

Marco Tarini
Universita degli studi di Milano 19

3D Video Games
05: Game Physics

- Dynamics 2/3

Verlet: caveats LS

A\it assumes a constant dt (time-step duration)
e if it varies: corrections are needed! (how? —see below)
/A Q: how to act on velocity (which is now implicit)?
e e.g., how to apply impulses

e A:change Pyiq instead (how?)
A\Q; how to act of positions w/o impacting velocity?

e e.g. to apply teleports / kinematic motions
e A:displace both Ppew and Poig by the same amount
A\ Q: how to apply velocity damps?

e Aracton Poig OF Pnext (see below)

Marco Tarini

99

]

2021-04-08

Changing the value of dt in Verlet -:?1

(if it’s not constant)

Problem:
if dt now changes to a new dt’

then, all p,,; Mmust be updated to some pg4

— dt current velocity ¥
Pnow pOld)/ and position Prow

Findplyy: 7= (: ,
v (pnow - pold)/dt must not change

p—
pgld = Ppow * (dt — dt’)/dt + Pota - dt,/dt

100

Universita degli studi di Milano

20

3D Video Games 2021-04-08
05: Game Physics - Dynamics 2/3

Velocity damping in Verlet (way 2) ,',':]v.
implicit

e Velocity at next frame: U = (Pnext — Pnow)/dt

- eg 098
e before applying accelerations ™ obtained as
(1-dt-cprac)

e \We can do that using a more general formula for pyext

e We want to multiply ¥ a factor Cgamp .

Pnext = 2 Prow -1 “poua + dt? - d

Pnext = (1 + Cdamp) " Pnow — Cdamp " Poid +dt*-d

102

.‘l_-._"l
Velocity damping in Verlet (way 2) s
(geometric interpretation)
a bit shorter
0.987)
pnext N pnext
v
anW
Poia Pota
Prext = 2 *Pnow — 1 - Pow Prext = 1.98 - Prow — 0.98 - poia
Equivalently, Equivalently,
Prnext iS an extrapolation Prext is a different extrapolation
of Prow, Poia : of Prow, Poia :
Prext = Mix(Poid » Prow, 2) Prext = Mix(Poia » Prow, 1-98)

103

Marco Tarini
Universita degli studi di Milano 21

