
3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩௢௟ௗ = 𝐩௡௢௪

𝐩௡௢௪ = 𝐩௡௘௫௧

init
state

one
step

𝐩௡௢௪ ⟵ . . .

𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩௡௢௪)

�⃗� ⟵ 𝑓/𝑚

𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + �⃗� ⋅ 𝑑𝑡ଶ

Enforce constraints on (𝐩௡௘௫௧) 💡

104

105

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 2

Position Based Dynamics

 A positional constraint is
an equation/inequality
involving the positions of particles.
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”,

or “steel bars won’t become shorter or longer”
 We will see many specific examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles
 Thanks to Verlet: this displacement automatically causes

some appropriate update of the velocity!
 it’s not necessarily correct, it’s plausible and robust

a formula
with ‘=‘ ‘>’ ‘<‘ etc.

💡

Verlet + Position Based Dynamics.
Advantages
 flexibility: different constraints can be used to model

many different phenomena
 Useful constraints are straightforward to define
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
 For example: a ball won’t ever be seen outside the box

containing it (at lest, not for many frames)
 No forces / impulses are needed to enforce the same

consistency condition
 Which would be what happens in reality,

but also much more difficult to do robustly

106

107

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 3

Example of a positional constraint
(here, in 2D physics)

«I want particles to stay
inside a box [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

௔ ௕

௕

௔

௔ ௕

௕

௔

I want that…

108

109

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 4

Enforce equidistance constraints

if 𝐩௔ − 𝐩௕ < 𝑑

if 𝐩௔ − 𝐩௕ > 𝑑 ௕

௔

௕
௔

Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 d = pa – pb;
float currDist = v.length;

d /= currDist; // normalization of d

float delta = currDist – d ;

pa += (0.5 * delta) * d;
pb -= (0.5 * delta) * d;

assuming equal mass, we move each particle half the way
(see later for the more general case)

110

111

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 5

Enforcing sets of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: enforce them in cascade
(Gauss-Seidel fashon):

Repeat until convergence (= max error below threshold)
…but at most for N times! (always remember: it’s soft real-time)
(or, just repeat a fixed number N of times)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note:
 The whole loop for imposing the constraints happen in

the constraint enforcement phase on one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (it’s fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi) are possible
 they have a worse convergence in practice

(they require more iterations)

112

113

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 6

Equidistance constraints
VS springs

 They are similar
 they both mean:

these 2 particles “want to be” at this distance (not more, not less)
 Differences:

 spring:
 applied during

force evaluation step
 affecting forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affecting

positions
 models a rigid rod

between the two particles
 of a given length

 sometimes called
an “HARD” constraint

 A physic engine can combine them in one object!

some constant scalar parameter L

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 And more

114

115

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 7

Compounds of particles + constraints
disguised as rigid bodies

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box?
(rigid object)
In 2D a configuration of:
• 4 particles
• 6 equidistance constraints

116

117

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 8

Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by
inertia)

even the system does not
(explicitly) handle rotations
or
angular velocities

(works in 3D as well!)

118

119

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 9

Enforcing a positional constraint:
the general case.

 Check: does the equation/inequality hold?
 If so, nothing to do!
 Else:
 All positions must be displaced a bit, so that it does
 Infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses

 Find the minimizer by analytically
solving simple math problems
(“analytically” = in closed form = “on paper”)

Enforcing positional constraints in the
general case: formal problem definition

 We want to enforce a constraint 𝒞 on particles a , b , c,…
with have mass ma, mb, mc …

 𝒞 defined as an equation/inequality of their positions pa , pb , pc , …

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ

which minimize:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

120

121

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 10

Example:
the equidistance constraint

 To enforce the constraint
“particles a and b must stay at distance k ”
 input: current positions pa, pb

 input: masses ma, mb

 We need to the the displacements 𝑑ୟ , 𝑑ୠ
found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that pa + 𝑑ୟ − pb + 𝑑ୠ = 𝑘

 And the solution (in closed form) is…

Equidistance constraints: solution for
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

122

123

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 11

Positional constraint example:
“please don’t sink under a plane”

 We want to enforce the constraint
“particle a must be above a given constant plane ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

124

125

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 12

More examples of
positional constraints

 Preserve volume of some object: «Volume is 𝑣஼ »
 How to impose it:
1. Estimate current total volume 𝑣

2. uniform scaling of the entire object of 𝑣஼ /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝐩ୟ »
 particles «pinned in position»
 trivial to impose, but useful!

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶
 e.g. on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 Non interpenetration

 this is part of collision handling – see collisions later

𝐩௕

𝐩௖

𝐩௔
𝛂

Rigid objects as compounds of
constrained particles: advantages

 Interesting/rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence
of
constraints
disallowing
compene-
tration

you don’t
need to
compute
or store
these

126

127

3D Video Games
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini
Università degli studi di Milano 13

Particles + constraint,
or rigid bodies?

 Rigid-body based systems:
 explicitly compute dynamics for rigid bodies
 updating their rotation, angular speed,…

 Particles-based systems:
 only compute dynamics for particles
 rigid (or deformable, or jointed) bodies

as an emerging behavior

 Mixed systems:
 use both
 may even dynamically swap between the

two representations for rigid bodies

Rigid body as particles + constraints:
Challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted 
 example: the transform (position + orientation) of the

“rigid body” is needed to render the associated mesh
 similarly: angular speed, barycenter pos, velocity…

129

130

