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lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
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lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Verlet integration +
“Position Based Dynamics” (PBD)
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Enforce constraints on (𝐩௡௘௫௧) 💡
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Position Based Dynamics

 A positional constraint is 
an equation/inequality 
involving the positions of particles. 
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”, 

or “steel bars won’t become shorter or longer”
 We will see many specific examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles 
 Thanks to Verlet: this displacement automatically causes 

some appropriate update of the velocity!
 it’s not necessarily correct, it’s plausible and robust

a formula 
with ‘=‘ ‘>’ ‘<‘ etc.

💡

Verlet + Position Based Dynamics.
Advantages
 flexibility: different constraints can be used to model 

many different phenomena
 Useful constraints are straightforward to define 
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see 
 For example: a ball won’t ever be seen outside the box 

containing it (at lest, not for many frames)
 No forces / impulses are needed to enforce the same

consistency condition
 Which would be what happens in reality, 

but also much more difficult to do robustly
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Example of a positional constraint
(here, in 2D physics)

«I want particles to stay 
inside a box [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++) 
{

p[i].x = clamp( p[i].x, 0, 100 );
p[i].y = clamp( p[i].y, 0, 100 );

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first part of collision response.
For re-bounces, impulses must still be added (see collisions). 

Example of positional constraint: 
equidistance constraint

«Particles a and b must stay at a fixed distance d »

௔ ௕

௕

௔

௔ ௕

௕

௔

I want that…
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Enforce equidistance constraints

if  𝐩௔ − 𝐩௕ < 𝑑

if  𝐩௔ − 𝐩௕ > 𝑑 ௕

௔

௕
௔

Enforce equidistance constraints: 
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d;        // distance (to enforce)

Vector3 d = pa – pb;
float currDist = v.length;

d /= currDist;  // normalization of d

float delta = currDist – d ;

pa += ( 0.5 * delta) * d;
pb -= ( 0.5 * delta) * d;

assuming equal mass, we move each particle half the way
(see later for the more general case)
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Enforcing sets of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: enforce them in cascade 
(Gauss-Seidel fashon):

Repeat until convergence (= max error below threshold)
…but at most for N times! (always remember: it’s soft real-time)
(or, just repeat a fixed number N of times)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note: 
 The whole loop for imposing the constraints happen in 

the constraint enforcement phase on one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (it’s fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations): 

solve the most unsatisfied constraints first 
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi) are possible
 they have a worse convergence in practice

(they require more iterations)
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Equidistance constraints
VS springs

 They are similar
 they both mean: 

these 2 particles “want to be” at this distance (not more, not less)
 Differences:

 spring:
 applied during 

force evaluation step
 affecting forces, 

therefore accelerations
 models a deformable spring 

between the two particles
 of a given length

 sometimes called 
a “SOFT” constraint

 equidistance constraint: 
 applied during 

constraint enforcement
 directly affecting 

positions
 models a rigid rod 

between the two particles
 of a given length

 sometimes called 
an “HARD” constraint

 A physic engine can combine them in one object!

some constant scalar parameter L

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 And more
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Compounds of particles + constraints
disguised as rigid bodies

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box? 
(rigid object)
In 2D a configuration of:
• 4 particles 
• 6 equidistance constraints
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Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
resulting

(implicit) velocities

NO

In total: the “box”, 
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by 
inertia)

even the system does not 
(explicitly) handle rotations 
or
angular velocities

(works in 3D as well!)
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Enforcing a positional constraint:
the general case.

 Check: does the equation/inequality hold? 
 If so, nothing to do! 
 Else:
 All positions must be displaced a bit, so that it does
 Infinite ways to achieve this. Which one to pick?
 Answer: 

minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses

 Find the minimizer by analytically 
solving simple math problems
(“analytically” = in closed form = “on paper”)

Enforcing positional constraints in the 
general case: formal problem definition

 We want to enforce a constraint 𝒞 on particles a , b , c,…
with have mass ma, mb, mc … 

 𝒞 defined as an equation/inequality of their positions  pa  , pb , pc  , …

 We must apply the displacements 𝑑ୟ ,  𝑑ୠ ,  𝑑ୡ

which minimize:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that   𝒞 pa + 𝑑ୟ   ,pb + 𝑑ୠ   ,pc + 𝑑ୡ   , …
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Example: 
the equidistance constraint

 To enforce the constraint 
“particles a and b must stay at distance k ”
 input: current positions pa, pb

 input: masses ma, mb

 We need to the the displacements 𝑑ୟ ,  𝑑ୠ 
found by minimizing:

argmin
ௗ౗ , ௗౘ 

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that  pa + 𝑑ୟ − pb + 𝑑ୠ = 𝑘

 And the solution (in closed form) is…

Equidistance constraints: solution for 
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb;   // masses of a,b
float d;        // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist;  // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += ( mb/(ma+mb) * delta) * v;
pb -= ( ma/(ma+mb) * delta) * v;
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Positional constraint example:  
“please don’t sink under a plane”

 We want to enforce the constraint 
“particle a must be above a given constant plane ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ 

ma 𝑑ୟ

ଶ

such that  pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a
float ma;   // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot( v , n );

if (currDist < 0.0) 
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing
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More examples of
positional constraints

 Preserve volume of some object: «Volume is 𝑣஼ »
 How to impose it:
1. Estimate current total volume 𝑣 

2. uniform scaling of the entire object of  𝑣஼ /𝑣 
య

 Fixed positions: «particle 𝑎  stays in 𝐩ୟ »
 particles «pinned in position»
 trivial to impose, but useful!

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶
 e.g. on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 Non interpenetration 

 this is part of collision handling – see collisions later

𝐩௕

𝐩௖

𝐩௔
𝛂

Rigid objects as compounds of 
constrained  particles: advantages

 Interesting/rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence 
of 
constraints 
disallowing 
compene-
tration

you don’t 
need to 
compute
or store 
these

126

127



3D Video Games                                
05: Game Physics - Dynamics 3/3

2021-04-13

Marco Tarini                                  
Università degli studi di Milano     13

Particles + constraint,
or rigid bodies?

 Rigid-body based systems:
 explicitly compute dynamics for rigid bodies
 updating their rotation, angular speed,…

 Particles-based systems:
 only compute dynamics for particles 
 rigid (or deformable, or jointed) bodies 

as an emerging behavior

 Mixed systems:
 use both
 may even dynamically swap between the 

two representations for rigid bodies

Rigid body as particles + constraints:
Challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted 
 example: the transform (position + orientation) of the 

“rigid body” is needed to render the associated mesh
 similarly: angular speed, barycenter pos, velocity…
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