
3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 1

3D video games

notes on the
coding done in class

Marco Tarini

Objective of this sandbox

Implement a simple Verlet based, PBD physics system
on Unity
 Basic idea:

 don’t enable default Unity physics system
 instead, crudely implement phsyics in scripts by hand
 note: in a normal project, there’s no reason to do this!

 How not to enable physics in Unity:
 Just don’t add or remove, to any GameObject,

any “RigidBody” component (implemets dynamics) and
any “Collider” component (implements collision handling)

 we will still use the normal Unity Graphics engine
 scene-graph support, GameObjects, their Transforms

131

132

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 2

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game Object

 It is a C# class, with predefined methods used by the
resto of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called for each fixed step
 Update() – called before rendering this object
 LateUpdate() – called at the end of the redering

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Particles and Particle behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior includes the fields:
 pNow, pOld (points): for Verlet dynamics

(pNow is the current position)
 mass, drag (scalars): constants (exposed to the interface)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

133

134

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 3

Implementation detail:
pNow VS transform.position
 For each particle, the current positions is stored twice:

 The position according to our custom physics engine:
pNow – a custom field in the “behavior” of the particle

 rendering position: the position used by the rendering engine
transform.position, i.e. the position Unity uses for everything

 We keep them separated, just for code clarity
 At the beginning (start method)

 physic position ← rendering position
(so that the objects starts where we placed them in the GUI)

 Before each rendering (update method)
 rendering position ← physic position

(so that the object is rendered where the physics moved it)

Implementation detail:
pNow VS transform.position
 When to synchronize graphics (transform.position)

and our physics (pNow)?
 Best solution we found in class:

 In method Start(): pNow ← transform.position
 This makes the physics be initialized with the position

set from the Unity GUI

 At end of FixedUpdate(): transform.position ← pNow
 this makes the engine show the particle on screen

at its’ correct physics position

 In LateUpdate(): pNow ← transform.position
 this allows us to control the (physics) position from the GUI
 Observe: because it’s Verlet, by changing the position we control

also the velocity. E.g. we can “toss” objects

135

136

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 4

Fixed-update of particles

 Basic Verlet integration occurs here
 Includes velocity dumping
 see dump computation

 Includes addition of forces
which depend only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 Such as ground collision (“please stay above ground”)

Adding sticks

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering:
 A rod is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (update method)

a transformation is computed so that the cylinder is scaled
(on Y only), rotated, and translated
to make it graphically connect the two particles

 (therefore, it doesn't matter where we place them in the
scene: they will teleport to the right location at each frame)

137

138

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 5

Stick behavior

 Fields:
 Connected particles A and B

It’s a public field: set them in the Unity GUI !
 Rest length (computed on Start as the initial distance

between particles A and B)

 Methods:
 FixedUpdate: enforce the positional constraints, acting on

the position of the two particles
 EnforcePositionalConstraint: self explainatory

Note: this take in account correctly of their mass

Sand box: results.

 Combining multiple particles and rods,
we construct meta-objects such as…
 Rigid objects
 TODO: ropes, pendulums

 Observe: rigid objects behave correctly, with plausible…
 Effect of impact with the ground
 Angular velocity
 Angular momentum
 Barycenter (try assigning a different mass to a rigid)

139

140

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 6

Adding positional constraint:
stay “fixed”

 A Particle can simply “be asked” to stay fixed
 How-to notes:
 Add a public Boolean field isFixed
 Add the Vector3 field fixedPos , the pos where this

particle is fixed in the scene (initialize it on Start on the
fixed position)

 Trivially impose the constraint in the mothod()

 Small hack:
 fixedPos is also updated at every frame,

as the current rendering position
 (so that we can move this particle from the GUI)

A problem and a fix
(fix was done in the minutes after the official end of
the lecture)

 The problem:
 In Position Based Dynamics, all positional constraints must

be solved multiple times per frame, on cascade
 In our code, the constraints are enforced by

EnforceConstraints methods of to
Particles and Sticks,
and run in the FixedUpdate methods

 Therefore: we enforce them only once
(plus, we don’t know in which order!)

 Result: the simulation was a little unstable (object won’t
stop moving, etc)

141

142

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 7

A problem and a fix
(fix was done in the minutes after the official end of
the lecture)

 The solution: (this is typical in Unity programming)
 Create a global empty GameObject (“global script holder”)
 Associate a global script to it.
 In its “fixedUpdate”, this scripts enforces all constraints

 multiple times
 and in a order which we can control

 To enforce all constraints:
 Remove execution of “enforceConstraint” from the FixedUpdate

particle and sticks scripts
 Make these methods public!
 In the global script, find all particles and all sticks in the scene
 For each one, call its “enforceConstraint” method

143

