
3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 1

3D video games

notes on the
coding done in class

Marco Tarini

Objective of this sandbox

Implement a simple Verlet based, PBD physics system
on Unity
 Basic idea:

 don’t enable default Unity physics system
 instead, crudely implement phsyics in scripts by hand
 note: in a normal project, there’s no reason to do this!

 How not to enable physics in Unity:
 Just don’t add or remove, to any GameObject,

any “RigidBody” component (implemets dynamics) and
any “Collider” component (implements collision handling)

 we will still use the normal Unity Graphics engine
 scene-graph support, GameObjects, their Transforms

131

132

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 2

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game Object

 It is a C# class, with predefined methods used by the
resto of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called for each fixed step
 Update() – called before rendering this object
 LateUpdate() – called at the end of the redering

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Particles and Particle behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior includes the fields:
 pNow, pOld (points): for Verlet dynamics

(pNow is the current position)
 mass, drag (scalars): constants (exposed to the interface)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

133

134

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 3

Implementation detail:
pNow VS transform.position
 For each particle, the current positions is stored twice:

 The position according to our custom physics engine:
pNow – a custom field in the “behavior” of the particle

 rendering position: the position used by the rendering engine
transform.position, i.e. the position Unity uses for everything

 We keep them separated, just for code clarity
 At the beginning (start method)

 physic position ← rendering position
(so that the objects starts where we placed them in the GUI)

 Before each rendering (update method)
 rendering position ← physic position

(so that the object is rendered where the physics moved it)

Implementation detail:
pNow VS transform.position
 When to synchronize graphics (transform.position)

and our physics (pNow)?
 Best solution we found in class:

 In method Start(): pNow ← transform.position
 This makes the physics be initialized with the position

set from the Unity GUI

 At end of FixedUpdate(): transform.position ← pNow
 this makes the engine show the particle on screen

at its’ correct physics position

 In LateUpdate(): pNow ← transform.position
 this allows us to control the (physics) position from the GUI
 Observe: because it’s Verlet, by changing the position we control

also the velocity. E.g. we can “toss” objects

135

136

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 4

Fixed-update of particles

 Basic Verlet integration occurs here
 Includes velocity dumping
 see dump computation

 Includes addition of forces
which depend only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 Such as ground collision (“please stay above ground”)

Adding sticks

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering:
 A rod is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (update method)

a transformation is computed so that the cylinder is scaled
(on Y only), rotated, and translated
to make it graphically connect the two particles

 (therefore, it doesn't matter where we place them in the
scene: they will teleport to the right location at each frame)

137

138

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 5

Stick behavior

 Fields:
 Connected particles A and B

It’s a public field: set them in the Unity GUI !
 Rest length (computed on Start as the initial distance

between particles A and B)

 Methods:
 FixedUpdate: enforce the positional constraints, acting on

the position of the two particles
 EnforcePositionalConstraint: self explainatory

Note: this take in account correctly of their mass

Sand box: results.

 Combining multiple particles and rods,
we construct meta-objects such as…
 Rigid objects
 TODO: ropes, pendulums

 Observe: rigid objects behave correctly, with plausible…
 Effect of impact with the ground
 Angular velocity
 Angular momentum
 Barycenter (try assigning a different mass to a rigid)

139

140

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 6

Adding positional constraint:
stay “fixed”

 A Particle can simply “be asked” to stay fixed
 How-to notes:
 Add a public Boolean field isFixed
 Add the Vector3 field fixedPos , the pos where this

particle is fixed in the scene (initialize it on Start on the
fixed position)

 Trivially impose the constraint in the mothod()

 Small hack:
 fixedPos is also updated at every frame,

as the current rendering position
 (so that we can move this particle from the GUI)

A problem and a fix
(fix was done in the minutes after the official end of
the lecture)

 The problem:
 In Position Based Dynamics, all positional constraints must

be solved multiple times per frame, on cascade
 In our code, the constraints are enforced by

EnforceConstraints methods of to
Particles and Sticks,
and run in the FixedUpdate methods

 Therefore: we enforce them only once
(plus, we don’t know in which order!)

 Result: the simulation was a little unstable (object won’t
stop moving, etc)

141

142

3D Video Games
05: Game Physics - Dynamics -
Live coding notes

2021-04-13

Marco Tarini
Università degli studi di Milano 7

A problem and a fix
(fix was done in the minutes after the official end of
the lecture)

 The solution: (this is typical in Unity programming)
 Create a global empty GameObject (“global script holder”)
 Associate a global script to it.
 In its “fixedUpdate”, this scripts enforces all constraints

 multiple times
 and in a order which we can control

 To enforce all constraints:
 Remove execution of “enforceConstraint” from the FixedUpdate

particle and sticks scripts
 Make these methods public!
 In the global script, find all particles and all sticks in the scene
 For each one, call its “enforceConstraint” method

143

