
3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 1

3D video games

Collision Handling

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 2

Collision Handling:
a preliminary optimization

 Two types of objects in a game:
 static objects

 Never move (speed = 0)
 Part of setting, background
 Can affect other objects,

not affected by other objects
 non-static objects

 Can move around
(for any reason)

 Two types of collisions:
 one-way :

a non-static object with a static object
 two-ways :

a non-static object with a non-static object

Static

M
ovable

Static 🚫 One
Way

Movable One
Way

Two
Ways

Collision Handling

 Collision detection
 find out when they occur

 Collision response
 compute their effects

6

7

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 3

Collision response

 Enforce non-penetration
 place objects in valid positions
 (when to: always)

 Impacts
 add impulses (rebounces, etc)
 (when to: collision occurred now, but not in the pref frame)

 Frictions between the two objects
 energy dissipation
 (when to: from 2° consecutive step of collision)

 Ad-hoc effects
 breaking of objects, gameplay effects (HP loss?), etc (scripts)
 (when to - if at all: entirely gameplay dependent)

Enforcing non-penetration

 Invalid position?
 strategy 1: revert to last valid pos (easy to do, not ideal)

 strategy 2: project to closest valid pos (necessary, in PBD)

not valid closest
valid pos

8

9

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 4

Enforcing non-penetration

 With Position Based Dynamics:
just another positional constraint
 bonus: velocity updates

(similar to inelastic impacts)
 but we will need to explicitly compute

impacts if we want a better control
of the behavior

 How to enforce this constraint:
 two-ways :

displace both of them,
minimizing the summed squared displacements × the mass

 one-way :
only displace the one movable objects by the minimal amount
(equivalent to the above, when fixed object mass → ∞)

Note: asymmetrical
constraint (> not =)

A big practical problem  :
the presence of the
constraint it is not known
a-priori.

Frictions

 Apply on prolonged contact
 collision with an object that was colliding last frame too

 Affects component of velocity parallel to contact
plane

 Can be implemented with:
(1) forces, or (2) velocity damping

 Forces:
 Opposite to current velocity projected on plane
 Magnitude: proportional to speed
 or (more simply): velocity damping

10

11

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 5

Resolving the impacts

 Sudden velocity change
 resolve the impact = determine the new velocities 𝑣⃗௡௘௪

 equivalently, determine the impulses 𝚤 =(𝑣⃗௡௘௪ − 𝑣⃗௢௟ௗ) ȉ 𝑚

 All impacts preserve total momentum 𝑚 ȉ 𝑣⃗
 Always, no matter what

 To resolve the impacts,
we need further assumptions,
different for each type of impact…
 elastic impact
 inelastic impact
 or anything in between

so, with an impulse

a vector
(ita: «quantità di moto»)

Different type of impacts

(completely)
elastic
impact

(completely)
inelalastic

impact

12

13

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 6

“Bounciness” = 0.0

…

“Bounciness” = 0.5

…

“Bounciness” (or impact elasticity)

“Bounciness” = 1.0

“Bounciness” (or impact elasticity)

 Elastic impact: no energy lost
 Inelastic impact: energy losses
 e.g. objects are damaged, heat is produced…

 “Bounciness”: a (made up) property of physical objects
in games
 It models the behavior of the object under impacts,

as a mix between the two extreme behaviors above
 Associated by designers to all virtual objects in the game

 Note: nothing of this is how stuff really works!
 not even for the two extremes
 It’s a cheap approximation (especially for mixed bounciness)
 Remember: we are just shooting for plausibility

14

15

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 7

What about this impact?

 Practical solution:
adopt some formula between the
bounciness values associated to the two objects
 For example: avg, min, max
 It’s a choice of the game engine
 (can be hard-wired in the physics engine,

or exposed to the users)

“Bounciness” = ???

Assumptions for
different types of impact

 (completely) elastic impact

 preservation of total kinetic energy 𝟏
𝟐

𝑚 ȉ 𝑣⃗ ଶ

 impulse direction = normal of impacted point

 (completely) inelastic impact
 after the impact, the two bodies have the same velocity
 (the impact momentarily “glued them together”)

 mixed cases:
 solve for both cases, then interpolate results
 interpolation weight is called “bounciness”

a scalar

(a brutal, practical solution – not correct but plausible)

16

17

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 8

Momentum:
(𝑚஺ + 𝑚஻) 𝑣⃗஺ା஻

(completely) inelastic impact

BEFORE: AFTER:

 𝑚஺

𝑣⃗஺

 𝑚஻

𝑣⃗஻

𝑣⃗஺ା஻ = ?
𝑚஺ + 𝑚஻

Momentum:
 𝑚஺ 𝑣⃗஺ + 𝑚஻ 𝑣⃗஻

the only unknown, so …

(completely) elastic impact: 1D case

BEFORE: AFTER:

𝑣஺
ᇱ =?

 𝑚஻ 𝑚஺ 𝑚஻ 𝑚஺
𝑣஺ 𝑣஻

𝑣஻
ᇱ =?

signed
scalar

momentum:
𝑚஺ 𝑣஺

ᇱ + 𝑚஻ 𝑣஻
ᇱ

momentum:
𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻

energy:
ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ

energy:
ଵ

ଶ
𝑚஺ 𝑣஺

ᇱ ଶ
+

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

18

19

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 9

(completely) elastic impact: 1D case

momentum
conservation:

ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ =
ଵ

ଶ
𝑚஺ 𝑣஺

ᇱ ଶ
+

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

⟹ 𝑖஻ = −𝑖஺

𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻ = 𝑚஺ 𝑣஺
ᇱ + 𝑚஻ 𝑣஻

ᇱ

energy
conservation:

⟹ 𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺ 𝑣஺+
௜ಲ

௠ಲ

ଶ

+ 𝑚஻ 𝑣஻+
௜ಳ

௠ಳ

ଶ

new velocities are
defined by the impulses: 𝑣஺

ᇱ = 𝑣஺ +
𝑖஺

𝑚஺

 𝑣஻
ᇱ = 𝑣஻ +

 𝑖஻

𝑚 ஻

⟹ 𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺ 𝑣஺
ଶ +

௜ಲ
మ

௠ಲ
+ 2 𝑣஺ 𝑖஺ + 𝑚஻ 𝑣஻

ଶ +
௜ಳ

మ

௠ಳ
+ 2 𝑣஻ 𝑖஻

⟹ 𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻ = 𝑚஺ 𝑣஺+
௜ಲ

௠ಲ
+ 𝑚஻ 𝑣஻+

௜ಳ

௠ಳ

⟹ 0 =
𝑖஺

ଶ

𝑚஺
+ 2 𝑣஺ 𝑖஺ +

𝑖஻
ଶ

𝑚஻
+ 2 𝑣஻ 𝑖஻

signed
scalars

(completely) elastic impact: 1D case

momentum
& energy
conservation:

𝑖஺
ଶ

𝑚஺
 + 2 𝑣஺ 𝑖஺ +

𝑖஺
ଶ

𝑚஻
 − 2 𝑣஻ 𝑖஺ = 0

𝑖஺
ଶ

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
 + 𝑖஺ 2 𝑣஺ − 𝑣஻ = 0

momentum
conservation: 𝑖஻ = −𝑖஺

𝑖஺ =
2 𝑚஺ 𝑚஻

𝑚஺ + 𝑚஻
𝑣஻ − 𝑣஺

(it’s just the 3rd law of dynamics)

𝑖஺ = 𝑖஻ = 0

solution 1 solution 2

𝑖஺ 𝑖஺

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
 + 2 𝑣஺ − 𝑣஻ = 0

before the impact after the impact

22

23

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 10

 Completely elastic case (1D):
 equal masses?

the two velocities just swap
 one-way impact, with A is static?

𝑣௕ just flips

 Completely inelastic case (3D):
 equal masses?

new velocity is the average
 one-way impact, with A static?

B also stops dead

Some special cases
(exercise: verify them)

𝑚஺ ⟶ ∞
&

𝑣஺ = 0

𝑛ො𝑛ො

(completely) elastic impact: 3D case

BEFORE: AFTER:

𝑣⃗஺
ᇱ = ?

 𝑚஻
 𝑚஺

momentum:
𝑚஺ 𝑣⃗஺

ᇱ + 𝑚஻ 𝑣⃗஻
ᇱ

momentum:
𝑚஺𝑣⃗஺ + 𝑚஻𝑣⃗஺

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ଶ +
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ଶ

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ᇱ ଶ +
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ᇱ ଶ

𝑣⃗஺
𝑣⃗஻

𝑣⃗஻
ᇱ = ?

 𝑚஻
 𝑚஺

24

25

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 11

(completely) elesastic impact: 3D case

 Additional assumption:
 Ǝ impact plane, with normal 𝑛ො

 o, in 2D: impact line

 impulses must be orthogonal to this plane 𝚤஺,஻ = 𝑖஺,஻𝑛ො

 To solve the impact
 find scalar velocities 𝑣஺,஻ as the component of

vector velocities 𝑣⃗஺,஻ along 𝑛ො : 𝑣஺,஻ = 𝑣⃗஺,஻ ȉ 𝑛ො

 find scalar impulses 𝑖஺,஻ (use the 1D case)
 find vector impulses 𝚤஺,஻ = 𝑖஺,஻𝑛ො

 apply them to vector velocities

vector
impulses

scalar
impulses,

pos. or neg.
(the unkonwns)

we need
this
data!

A mini geometric subproblem

 Solution in 3 steps:
(1) 𝑠௡ ← 𝑣⃗ ȉ 𝑛ො

(2) 𝑣⃗௡ ← 𝑠௡ 𝑛ො

(3) 𝑣⃗௣ ← 𝑣⃗ − 𝑣⃗௡

 Useful because:
 only 𝑣⃗௡ is affected by elastic impacts with plane
 only 𝑣⃗௣ is affected by frictions with plane (e.g.: dump it!)

 𝑠௡ is used to solve elastic impacts (use 1D case)

𝑣⃗௣

𝑛ො 𝑣⃗

 𝑣⃗௡ + 𝑣⃗௣

𝑣⃗௡

 Given velocity vector 𝑣⃗
and the impact plane normal 𝑛ො ,
split 𝑣⃗ in the vector sum
𝑣⃗ = 𝑣⃗௡ + 𝑣⃗௣ with
 𝑣⃗௡ orthogonal to the plane (= parallel to 𝑛ො)
 𝑣⃗௣ parallel to the plane (= orthogonal to 𝑛ො)

(signed) speed 𝑠௡ : a scalar
velocity 𝑣⃗௡ : a vector

26

27

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 12

Notes on

impacts between rigid bodies

 We only have seen impacts between particles
 i.e., we disregarded angular velocities
 when rigid bodies are implicitly implemented as

particles + distance constraints, this is all we need to do!
 Effect of elastic / inelastic impacts on angular velocities

will be an (approximated) emerging behavior👍
 Impacts between explicit rigid bodies require to explicitly

compute the two post-impact angular velocities too
 Different math, stemming form the same principles:
 Angular momentum: it is always preserved
 Anelastic impact: post-impact angular velocities must also match
 Elastic impact: kinetic rotational energy must also be preserved
 Bounciness ∈ (0,1): interpolate angular velocities of the above

that is,
considering
angular velocities too

From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 a hit positions
 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

28

29

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 13

Collision Handling

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

Collision detection

 The usual main problem: efficiency
 Observation:
 almost 100% of the objects,

almost 100% of the times,
do NOT collide.

 for efficiency,
the «no-collision» case needs to be optimized

 «early reject» of the text

30

31

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 14

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects  n2 tests ?

Geometric proxies

32

33

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 15

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, used in its place

 usually, a much cruder approx.
than the 3D model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision object)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

Geometric proxies:
not only for collision detection, but also:

 physic engine
 extract data for collision response
 extract barycenter position

& moment-of-inertia matrix of rigid bodies
(assuming uniform specific-weight)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways)

 3D sounds
 sound absorption in sound propagatin

Basically, for any other task except rendering:
internally, objects are their proxies.

34

35

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 16

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject»
optimization

An approximation
of the
collision detection

Geometric proxies: shapes

 Sphere
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Box

 aka AABB
 Generic (Bounding) Box
 Discrete Oriented Polytope

 aka DOP
 Ellipsoid

 axis aligned or not
 Cylinders
 Convex polyhedron
 Non-convex polyhedron

 Meshes
 …

36

37

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 17

🤔 choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store them
 Behavior under transformations
 the ones we plan to use, e.g., isometries

 How good is the geometric approximation
 for the objects we will use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies …
 also, is it easy to compute / good is the collision data?

by algorithms

assets!
by artists

Which geometric proxy shapes
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection tests algorithm to be implemented

quadratic with # of supported types
 note: any supported proxy types

can be used for either Bounding Volumes or Colliders

Shape A

Shape B

Shape C

Shape A Shape B Shape C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

38

39

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 18

Geometry proxies:
Sphere

  easy to compute automatically
 only the approximatively optimal one

  tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐௫, 𝑐௬, 𝑐௭, 𝑟)

  collision test are trivial (against anything)
 how? exercise – including collision data computation

  can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

  approximation quality:
 it depends on the object (as usual), but often, quite poor.
 what about, e.g.: a head? A character? A house? A sword?

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored with:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

40

41

3D Video Games
06: Game Physics - Collisions 1/2

2020-05-04

Marco Tarini
Università degli studi di Milano 19

Geometry proxies:
a half-space

 Trivial, but useful!
 e.g. for a flat terrain,

or a wall…

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

𝑛

Mini-exercise:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: 𝑛
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

𝑛 ȉ 𝐪 − 𝐩 =
𝑛 ȉ 𝐪 − 𝑛 ȉ 𝐩 =
𝑛 ȉ 𝐪 + 𝑘 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
𝑛

the vec4
representing the plane

𝑘 = −𝑛 ȉ 𝐩
(minus distance of plane from orig.)

𝑛

𝑛

𝑛

42

43

