
3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

Let’s continue
the discussion
on geometry proxies
for collision detection

Geometry proxies:
«AABB»

Axis Aligned (Bounding) Box
 Easy to compute / update
 Concise to store

 Hint: it’s three interval: on X, on Y, on Z
 Easy to test for collision VS a point, or another AABB, etc

 Transforms:
 cannot be rotated
 can be easily scaled / translated

Misnomer: not necessarily
a “bounding” volume:
could be used as a collider too

44

45

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 2

Geometry proxies:
Box

 “Parallelepiped”
 non axis aligned
 generalized version

of AABB
 storage:

 a rotation +
 an AABB

 Can be freely transformed
 note: only if scaling is uniform

 Tests: a more computations needed

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

46

47

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 3

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-space
 Similar as previous,

but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Colliders :)
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)
 collision proxies are assets!

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

not worth it for
a Bounding Volume !

potentially concave

48

49

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 4

3D meshes for geometry proxies vs
3D meshes for rendering

 Proxy meshes are
 much lower res (e.g. < 102 faces)
 no attributes (no uv-mapping, no color, etc)

 based generic polygons, not just tris (as long as they are flat)

 closed, water-tight (inside != outside)

 sometimes: convex only
 completely different internal data structures

(e.g. set of bounding planes)

see lecture on 3D models later

Geometry proxies:
compositition of many proxies

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub proxy

 Very expressive!
 better approximation for many objects,

even with very few proxies
 note: union of convex proxies can be concave !

 Still quite efficient to store / test
 Very difficult to construct automatically
 Open problem!

50

51

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 5

3D Meshes as
proxies

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

3D Meshes as
proxies

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

52

53

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 6

Bounding Volume +
Collision Object

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

around
a more complex
Collision Object
approximating

the same object

note: intersect and collide
aren’t the same function here

How to construct geometry proxies?

 “Given an object representation M,
build an appropriate proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially for colliders

 it’s a bit easier for bounding volumes
 especially if we want to pick simpler (more efficient) proxies

 such as collection of a few spheres, capsules, boxes
 especially if we want good approximations

 It’s often done manually by digital artists

Geometry proxies are assets !

54

55

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 7

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunneling»
 Can happen if:

- dt too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

t

NO COLLISION

t + dt

NO COLLISION

aka

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t

t + dt

COLLISION

t

NO COLLISION

t + dt

COLLISION

56

57

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 8

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «telefort the object in the safe position».
 it never left a safe position!
 preventing penetrations easier than curing them.

 Much more difficult to do, too
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, practical to apply only in these cases
 and when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a time interval)

Aka:aka

Dirgression: collision detection
in traditional 2D games

 A much easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support like sprite rendering)
 little need for proxy approximations for colliders
 good proxy for bounding volumes: sprite rectangle

NO COLLISION NO COLLISION COLLISION

in screen space

58

59

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 9

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 N objects N2 tests ?

How to avoid a quadratic explosions
of needed tests

 Classes of solutions:

1) spatial indexing structures

2) BVH – Bounding Volume Hierarchies

60

61

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 10

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap!
 for moving parts of the scene, an update! Consuming!
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree

a b

c d e f

g h i j

k l

m n o p

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

62

63

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 11

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

64

65

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 12

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

Quad-Tree
(in 2D)

the (2D) world

66

67

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 13

Oct Tree
(same, for 3D)

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits into all dimensions at once,

(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough

objects
(or limit level reached)

68

69

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 14

BSP-tree
Binary Spatial Partition tree

the world

BSP-tree
Binary Spatial Partitioning tree

 Another hierarchical spatial structure
 root = all scene, child-nodes = partition of parent (as usual)
 spatial query = traverse the tree from the top down (as usual)
 a binary tree (as kD-trees)
 BUT: each node is split by an arbitrary plane

 plane is stored at node, as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)
 planes can be optimized for a given scene

 e.g., to go for a 50%-50% object split at each node
 e.g., to leave exactly one object at leaves
 Pro: they can be optimized for optimal queries: better query time!
 Con: must be optimized during construction: worse construction time!

 Another use: to store/test (General) Polyhedron proxy:
 note: planes are stored in its object space
 each leaf: a bit: inside or outside
 tree is precomputed for a given Collision Polyhedron

in 2D: a line

assuming it is always
possible to split any two

apart – a reasonable
assumption

70

71

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 15

BSP-trees to encode
a Polyhedron proxy (Concave too)

IN

OUT

BSP-trees to encode
a Polyhedron proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

E

C

B

A

in front? behind?

F

72

73

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 16

How to avoid a quadratic explosions
of needed tests

 Classes of solutions:

1) spatial indexing structures

2) BVH – Bounding Volume Hierarchies

BVH
Bounding Volume Hierarchy

74

75

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 17

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

76

77

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 18

BVH
Bounding Volume Hierarchy

 Idea: use the scene hierarchy given by the scene
graph
 (instead of a spatial derived one)

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick!
 bottom-up: recursive (how?)

 using it:
 top-down: visit (how?)
 note: not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

Spatial indexing structures
Recap
 Regular Grid

 the most parallelizable (to update / construct / use)
 constant time access (best!)
 quadratic / cubic RAM space (2D, 3D) – unless hashing

 kD-tree, Oct-tree, Quad-tree
 compact
 simple

 BSP-tree
 optimized splits! best performance when accessed
 optimized splits! more complex construction / update
 ideal for static parts of the scene?
 (also, used for generic Polyhedral Collider)

 alternative: BVH
 simplest construction
 non necessarily super efficient to access

 may need to traverse multiple children
 if uses same hierarchy of the scene-graph: not always the best

 ideal for dynamic parts of the scene?

78

79

3D Video Games
06: Game Physics - Collisions 2/2

2020-05-04

Marco Tarini
Università degli studi di Milano 19

Physics Engine:
an implementation problem
 Task: Dynamics:

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement:
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection:
 non-trivial data structures, hierarchies, recursive algorithms…
 hugely variable workflow

 (e.g.: quick on no-collision, more work to do when the rare collisions occur)
 difficult to parallelize: CPU
 but outcome affect the other two tasks (e.g. creates constraints):

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

Physics: that’s all folks.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

80

81

