
3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 1

3D video games

Particle Effects

Marco Tarini

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems ◗

lec. 6: Game 3D Models
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 2

Particle effects
(aka «particle FX», «particle systems»)

 Digital representations of 3D objects...
 Not easily described by their surfaces
 And/or: very dynamic (variable topology)

 …such as:
 clouds, dust clouds
 flames, explosions
 water sprays, waterfalls, spouts
 rain, falling snow
 wind (transporting dust / leaves / etc)
 steam whiffle, walking dust-puffs
 custom visual effects (e.g. for magic spells, etc)
 swarms of flies
 sparks, fireworks, electric sparks
 gusts of smoke
 and so on

Particle effects:
just a bunch of particles
 one particle represents

 a water drop, a flame spark, a rain drop, a smoke puff…
 state of a particle

 Newtonian state: position, velocity
 maybe also : orientation, angular velocity
 lifespan («time (left) to live»)
 custom variables: size, color , etc…

 Each particle is
 dynamically emitted, aka “spawned”

(from an «emitter»)
 evolved (state changes)
 and disposed (removed), after a brief line

according to
some predefined
criteria

3

4

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 3

Particle effects:
just a bunch of particles

 Particles of a particle system are a simplified
version of particles in a physics engine
 with much simplified: dynamics, collision handling
 individual particles are not important!
 it’s the collective behavior (e.g. 10^1 – 10^6 particles)

that recreates the visual and the behavior
of the recreated effect (flame, explosion)

 the entire effect is often not that important either
 cosmetics, not gameplay

 Note: particles systems are used in movies
as well as videogames
 We will discuss the videogame version

Emitters & Particles

Emitter (plane)

Emitters
(spheres)

(example: falling snow) (exampe: burst flame)

Particles

5

6

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 4

Emitters: in
the scene
graph!

 Emitters reside in a scene graph node
 as such: it is positioned/oriented in the scene
 as such : it has some local/global transformation
 as such : is has its own local & glob object space
 to position/orientate the emitter means

to position/orientate the particle effect

The blaze,
the explosion,
the spray of
water, etc …

world

…

T1 T2

T4T3

(emitter)
FX

(emitter)
FX

Emitter:
the producer of particles

 emits particles according a designated criterion…
 in pseudo-random way

 with chosen probability distribution
 at a designated rate

 how many particles/sec
 produces particle

with an initial state
 initial pos: randomly generated

inside the emitter shape
 initial vel, position, etc

 …for an established interval of time
 e.g.: short (e.g. an explosion)
 or medium (e.g. a blood gush from a wound)
 or long (e.g. a column of smoke)
 or undefined (e.g. water from tap, flame from torch…)

time

emitted
particles
per second

1 sec 2 sec

some
function

100

200

300

7

8

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 5

Emitter’s «shape»

 Identifies the set of positions where
new particles can be produced

 Just a 3D geometrical abstraction
useful to guide particles creation
 e.g. a sphere, cone, box, plane, point…
 particle are created in a pseudo-random position

inside this volume
 Particle state:

initialized with data expressed in world space
or in object space (of the emitter)
 e.g.: smoke: vel predominantly in Up dir. of world space
 e.g.: rocket engine blaze: in Forward dir of emitter space

Internal data structure for
a running particle system

 An array of particles
 for each particle: its current status (position, velocity, time-to-live, …)

 “Circular” array can be used

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

currently active particles

maximal number of particles
(e.g. 5000)

(can be a hardwired limit)

new particles
to spawn

particles
to kill

9

10

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 6

Internal data structure for
a running particle system (pseudocode)

class Particle{
vec3 pos;
vec3 vel;
float time_to_live; // seconds. how much longer?
...etc...

}

class ParticleSystem{
Shape emitter;
vector< Particle > particles; // circular array

// interval of active particles
int first_active, last_active;

function evolve(float dt);
function render();
function init();

}

Particle effect:
GPU implementations

 Running (i.e. playing) a particle system
is extremely parallelizable
 especially if the used dynamics is simplified
 each particles “evolves” on its own
 spawn a “new” particle? Just reinitialize an existing

particle at the initial state (circular vectors)
 GPU based implementations are relatively

easy to do
 GPU evolution
 GPU rendering
 particle data never leaves the GPU!

11

12

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 7

Particle effects:
randomness / noise

 The spawning and evolution of particles typically
use noise functions (pseudo randomness)

 Examples:
 the initial position is randomly selected as any point

inside the emitter
 the initial color is selected as a random interpolation

between two given colors
 the speed and acceleration have random components

 This creates differentiation and reflect the
stochastic nature of the simulated phenomena
 Flames, etc

Evolution of the particles:
simplified dynamics

 Analytic evolution
 state(𝑡) ← f (𝑡)
 we can edit the trajectory of the particle f !
 kinematic particles – no real dynamics

 Numeric evolution, no forces:
 state(𝑡 + 𝑑𝑡) ← f (state(𝑡) , 𝑑𝑡)
 e.g. with Verlet integration, or Euler…
 but no forces: instead, vel is updated by a procedure.
 e.g. puff of smoke accelerate upward,

water droplets downward,
air bubbles in water accelerate upward + random

 Numeric evolution, with forces:
 give “mass” to particles
 include (and cumulate) forces such as:

cohesion between particles,
repulsion between particles

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

Note:
Can be computed in: emitter space,
or world space, or interpolations

13

14

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 8

Evolution of the particles:
simplified collision detection

 No collisions!
 e.g. smoke goes through walls (nobody cares)
 easiest / fastest

 Collisions only with hardwired things
 e.g. only with a plane, e.g. the ground
 still very easy to parallelize

 Collisions with all static objects in the scene
 can use spatial indexing structure.
 only in necessary

 Collision with dynamic objects too
 question to ask: is it really necessary?

 Collision with other particles too
 luxury. Rare (in games)

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

Evolution of the particles:
simplified collision response

Collision? Then…
 just kill the particle

 e.g. a spark hitting a wall just goes out
 stop the particle: vel = 0
 ad-hoc changes in the particle state

 e.g.: a water droplet just stops
on a surface for a while (looks wet)
then disappears

 e.g.: in an explosion particles just becomes a black
stain, stays for a while, then disappears

 full impact computation, but always one-way
 elastic, static, or in between
 particle is affected, object is not, even if dynamic

 full impact computation, possibly two-ways
 the impacted object, if it’s dynamic, is affected too
 (rare, expensive)

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

15

16

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 9

Rendering a particle effect:
way 1 – render each particle

Each particle is individually
rendered, as…

 one rendering primitive
 a point (“point splatting”) , a segment…

 or, one small 3D model
 few (or one!) polygons, maybe textured

 or, one impostor , i.e.
 a small quad centered at the particle
 oriented towards the observer (usually)
 with a texture (often, animated: frames)

e.g. alpha maps + RGB maps
 aka a “billboard”

Final look = superposition of all particles

very
popular
solution

Rendering particles individually

 The aspect of individual particles is controllable in many ways
 size of impostor?
 color of the splat?
 transparency level (alpha) the impostor?
 screen-space rotation of the impostor?
 if multiple sprites are available: which frame to use?
 etc

 They can be parameters:
 of time-to-live

 e.g., for a flame: at start: red color; mid-life: yellow color; end: black color
 e.g., for smoke:

at beginning small and dense particles; at end: large and transparent
 of speed
 or of many other factors

17

18

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 10

Rendering particles as impostors
2D images (textures)

The image (aka sprite) can change during time
(animation, sequence of frames)

The image is partially transparent or semitransparent
(it has an “alpha” channel)

Rendering particles as impostors
2D images (textures)

can also be rotated in view space
(or, in 3D)

19

20

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 11

Rendering a particle effect:
way 2 – fuse particles in one 3D shape

 Usually too time consuming, for a game
 Can be approximated with screen-space techniques

 pass 1:
splat a temporary
“blob” for each particle
in a offscreen buffer

 pass 2:
estimation of normals
of “blobs” union
in screen space

 pass 3:
rendering of the resulting surface

 Ideal for liquids!

this exam
ple by Sim

on G
reen (N

VIDIA)

see lecture
on Rendering later

Authoring
a particle effect

 Particle effect = just another asset
 Authoring it = the task of the Effects specialist
 Designing the behavior

 choose the emitter
 specify how particles are created & evolved
 how? by programming scripts for the task, or
 by specifying a predefined set of parameters through a GUI

(in a particle systems authoring suite)
 Designing the look

 which image (texture) for impostor
 which tiny 3D models ?
 which splat parameters, etc.

digital
artist

22

23

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 12

Authoring a particle effect
via a GUI

Effect
specialist

particle system
GUI

 Spawning parameters
 emitter shape
 emission ratio (over time) →
 initial state of particle (e.g. velocity)
 initial time to live

 Evolution parameters
 particle trajectory
 changes in vel
 forces, etc

 Rendering parameters
 Rendering strategy
 Colors
 Sprites / textures →
 Used 3D model, etc.

All that as a function of time,
or as a distribution random variables…

feedback

edits

Particle Effect asset

Many particle effect
framework / software exists
Example of specialized tools
 Houdini (widely used for movies)
 Cascade (in Unreal)
 Particle Flows (in 3D studio Max)
 X-Particles (for Cinema4D)
 thinkingParticles (plug-in for different software)
 …and many others
Many systems provide their own built-in editors
 Unity (“shuriken”) wysiwyg slider-based editor
 Blender
 Maya (“nParticles”)
 …and many others

24

25

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 13

Particle effects in…

RenderMan 20

nParticles (Maya)

Cascade (Unreal)

Blender

Shuriken (Unity)

Houdini

Particle effects in…

Particle Illusions (Boris FX)

Particle Flow (3D max)

TimeLineFx (RigzSoft)

X-Particles (Cinema4D)

PocCornFX

Thinking Particles

26

27

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 14

Just two notable examples

 Unity built-in
editor
for “shuriken”
particle systems

 Unreal built-in
editor
for “cascade”
particle system

Lack of established formats
for particle-effect assets

 Each software suit uses its own:
 set of parameters, tricks, degrees of customizability
 interface to let a FX specialist author the particle system

 ...and file formats to store that asset. Examples:
 Unity: stored as .prefabs
 Unreal: “cascade” file format
 Maya: .pdb .pda
 Renderman: .ptc
 Houdini: .geo .bgeo

28

29

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 15

Lack of established formats
for particle effect assets

 Problems:
 hard to run a particle system in a game engine unless that

particle system was authored in that engine/system
 hard to reuse or off-source particle systems across

different systems / engines

 To solve this,
a few “Esperanto” format
have been proposed
for particle systems:
 still not very established

(by Disney) (by Sony)

Particle effect:
cosmetics or gameplay?

 Typically, it’s only graphic coating
 known to increase visual realism / immersion
 communicates what’s going on to the player

(e.g., splashes = “you are walking on water”.
metal sparkles = “you have been it”)

 gameplay not affected
 this justifies many

approximations

 Remarkable
exceptions exist
 particles affecting gameplay

Portals, Valve, 2011

30

31

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 16

Digression:
particle effects outside videogames

 Particle effects are used
in movies too
 the techniques are the same
 naturally, there is less need

for simplification
 intended for off-line rendering

not real time
 a few of the sw tools listed

above are specialized for
this scenario

 Additional use of particle systems in movies: fur / hair / grass.
 imagine the trajectory of each particle as shape of an individual hair

instead of the position as a function of time

Practical (and fun) exercises

 Improvise as a FX specialist
 use any of the above software

(e.g., unity or unreal)
 use its interface to create a particle system to simulate

… something (an explosion, a gush of water)
 maybe follow a tutorial

 Observe some existing particle effect
 download them from repository / asset stores
 analyze them in the interface

 Reminder: this course is does not cover any digital
artist skills, but experimenting always helps you
understanding what goes on behind the scenes

32

33

