
3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 1

3D video games

Particle Effects

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗

lec. 6: Game 3D Models 
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 2

Particle effects
(aka «particle FX», «particle systems»)

 Digital representations of 3D objects...
 Not easily described by their surfaces
 And/or: very dynamic (variable topology)

 …such as:
 clouds, dust clouds
 flames, explosions
 water sprays, waterfalls, spouts
 rain, falling snow
 wind (transporting dust / leaves / etc)
 steam whiffle, walking dust-puffs
 custom visual effects (e.g. for magic spells, etc)
 swarms of flies
 sparks, fireworks, electric sparks
 gusts of smoke
 and so on

Particle effects:
just a bunch of particles
 one particle represents

 a water drop, a flame spark, a rain drop, a smoke puff…
 state of a particle

 Newtonian state: position, velocity
 maybe also : orientation, angular velocity
 lifespan («time (left) to live»)
 custom variables: size, color , etc…

 Each particle is
 dynamically emitted, aka “spawned”

(from an «emitter»)
 evolved (state changes)
 and disposed (removed), after a brief line

according to
some predefined
criteria

3

4

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 3

Particle effects:
just a bunch of particles

 Particles of a particle system are a simplified
version of particles in a physics engine
 with much simplified: dynamics, collision handling
 individual particles are not important!
 it’s the collective behavior (e.g. 10^1 – 10^6 particles)

that recreates the visual and the behavior
of the recreated effect (flame, explosion)

 the entire effect is often not that important either
 cosmetics, not gameplay

 Note: particles systems are used in movies
as well as videogames
 We will discuss the videogame version

Emitters & Particles

Emitter (plane)

Emitters
(spheres)

(example: falling snow) (exampe: burst flame)

Particles

5

6

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 4

Emitters: in
the scene
graph!

 Emitters reside in a scene graph node
 as such: it is positioned/oriented in the scene
 as such : it has some local/global transformation
 as such : is has its own local & glob object space
 to position/orientate the emitter means

to position/orientate the particle effect

The blaze,
the explosion,
the spray of
water, etc …

world

…

T1 T2

T4T3

(emitter)
FX

(emitter)
FX

Emitter:
the producer of particles

 emits particles according a designated criterion…
 in pseudo-random way

 with chosen probability distribution
 at a designated rate

 how many particles/sec
 produces particle

with an initial state
 initial pos: randomly generated

inside the emitter shape
 initial vel, position, etc

 …for an established interval of time
 e.g.: short (e.g. an explosion)
 or medium (e.g. a blood gush from a wound)
 or long (e.g. a column of smoke)
 or undefined (e.g. water from tap, flame from torch…)

time

emitted
particles
per second

1 sec 2 sec

some
function

100

200

300

7

8

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 5

Emitter’s «shape»

 Identifies the set of positions where
new particles can be produced

 Just a 3D geometrical abstraction
useful to guide particles creation
 e.g. a sphere, cone, box, plane, point…
 particle are created in a pseudo-random position

inside this volume
 Particle state:

initialized with data expressed in world space
or in object space (of the emitter)
 e.g.: smoke: vel predominantly in Up dir. of world space
 e.g.: rocket engine blaze: in Forward dir of emitter space

Internal data structure for
a running particle system

 An array of particles
 for each particle: its current status (position, velocity, time-to-live, …)

 “Circular” array can be used

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

currently active particles

maximal number of particles
(e.g. 5000)

(can be a hardwired limit)

new particles
to spawn

particles
to kill

9

10

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 6

Internal data structure for
a running particle system (pseudocode)

class Particle{
vec3 pos;
vec3 vel;
float time_to_live; // seconds. how much longer?
...etc...

}

class ParticleSystem{
Shape emitter;
vector< Particle > particles; // circular array

// interval of active particles
int first_active, last_active;

function evolve(float dt);
function render();
function init();

}

Particle effect:
GPU implementations

 Running (i.e. playing) a particle system
is extremely parallelizable
 especially if the used dynamics is simplified
 each particles “evolves” on its own
 spawn a “new” particle? Just reinitialize an existing

particle at the initial state (circular vectors)
 GPU based implementations are relatively

easy to do
 GPU evolution
 GPU rendering
 particle data never leaves the GPU!

11

12

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 7

Particle effects:
randomness / noise

 The spawning and evolution of particles typically
use noise functions (pseudo randomness)

 Examples:
 the initial position is randomly selected as any point

inside the emitter
 the initial color is selected as a random interpolation

between two given colors
 the speed and acceleration have random components

 This creates differentiation and reflect the
stochastic nature of the simulated phenomena
 Flames, etc

Evolution of the particles:
simplified dynamics

 Analytic evolution
 state(𝑡) ← f (𝑡)
 we can edit the trajectory of the particle f !
 kinematic particles – no real dynamics

 Numeric evolution, no forces:
 state(𝑡 + 𝑑𝑡) ← f (state(𝑡) , 𝑑𝑡)
 e.g. with Verlet integration, or Euler…
 but no forces: instead, vel is updated by a procedure.
 e.g. puff of smoke accelerate upward,

water droplets downward,
air bubbles in water accelerate upward + random

 Numeric evolution, with forces:
 give “mass” to particles
 include (and cumulate) forces such as:

cohesion between particles,
repulsion between particles

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

Note:
Can be computed in: emitter space,
or world space, or interpolations

13

14

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 8

Evolution of the particles:
simplified collision detection

 No collisions!
 e.g. smoke goes through walls (nobody cares)
 easiest / fastest

 Collisions only with hardwired things
 e.g. only with a plane, e.g. the ground
 still very easy to parallelize

 Collisions with all static objects in the scene
 can use spatial indexing structure.
 only in necessary

 Collision with dynamic objects too
 question to ask: is it really necessary?

 Collision with other particles too
 luxury. Rare (in games)

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

Evolution of the particles:
simplified collision response

Collision? Then…
 just kill the particle

 e.g. a spark hitting a wall just goes out
 stop the particle: vel = 0
 ad-hoc changes in the particle state

 e.g.: a water droplet just stops
on a surface for a while (looks wet)
then disappears

 e.g.: in an explosion particles just becomes a black
stain, stays for a while, then disappears

 full impact computation, but always one-way
 elastic, static, or in between
 particle is affected, object is not, even if dynamic

 full impact computation, possibly two-ways
 the impacted object, if it’s dynamic, is affected too
 (rare, expensive)

more procedural
(in the sense of a

simple procedure)

more
physically-based
(and expensive)

15

16

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 9

Rendering a particle effect:
way 1 – render each particle

Each particle is individually
rendered, as…

 one rendering primitive
 a point (“point splatting”) , a segment…

 or, one small 3D model
 few (or one!) polygons, maybe textured

 or, one impostor , i.e.
 a small quad centered at the particle
 oriented towards the observer (usually)
 with a texture (often, animated: frames)

e.g. alpha maps + RGB maps
 aka a “billboard”

Final look = superposition of all particles

very
popular
solution

Rendering particles individually

 The aspect of individual particles is controllable in many ways
 size of impostor?
 color of the splat?
 transparency level (alpha) the impostor?
 screen-space rotation of the impostor?
 if multiple sprites are available: which frame to use?
 etc

 They can be parameters:
 of time-to-live

 e.g., for a flame: at start: red color; mid-life: yellow color; end: black color
 e.g., for smoke:

at beginning small and dense particles; at end: large and transparent
 of speed
 or of many other factors

17

18

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 10

Rendering particles as impostors
2D images (textures)

The image (aka sprite) can change during time
(animation, sequence of frames)

The image is partially transparent or semitransparent
(it has an “alpha” channel)

Rendering particles as impostors
2D images (textures)

can also be rotated in view space
(or, in 3D)

19

20

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 11

Rendering a particle effect:
way 2 – fuse particles in one 3D shape

 Usually too time consuming, for a game
 Can be approximated with screen-space techniques

 pass 1:
splat a temporary
“blob” for each particle
in a offscreen buffer

 pass 2:
estimation of normals
of “blobs” union
in screen space

 pass 3:
rendering of the resulting surface

 Ideal for liquids!

this exam
ple by Sim

on G
reen (N

VIDIA)

see lecture
on Rendering later

Authoring
a particle effect

 Particle effect = just another asset
 Authoring it = the task of the Effects specialist
 Designing the behavior

 choose the emitter
 specify how particles are created & evolved
 how? by programming scripts for the task, or
 by specifying a predefined set of parameters through a GUI

(in a particle systems authoring suite)
 Designing the look

 which image (texture) for impostor
 which tiny 3D models ?
 which splat parameters, etc.

digital
artist

22

23

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 12

Authoring a particle effect
via a GUI

Effect
specialist

particle system
GUI

 Spawning parameters
 emitter shape
 emission ratio (over time) →
 initial state of particle (e.g. velocity)
 initial time to live

 Evolution parameters
 particle trajectory
 changes in vel
 forces, etc

 Rendering parameters
 Rendering strategy
 Colors
 Sprites / textures →
 Used 3D model, etc.

All that as a function of time,
or as a distribution random variables…

feedback

edits

Particle Effect asset

Many particle effect
framework / software exists
Example of specialized tools
 Houdini (widely used for movies)
 Cascade (in Unreal)
 Particle Flows (in 3D studio Max)
 X-Particles (for Cinema4D)
 thinkingParticles (plug-in for different software)
 …and many others
Many systems provide their own built-in editors
 Unity (“shuriken”) wysiwyg slider-based editor
 Blender
 Maya (“nParticles”)
 …and many others

24

25

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 13

Particle effects in…

RenderMan 20

nParticles (Maya)

Cascade (Unreal)

Blender

Shuriken (Unity)

Houdini

Particle effects in…

Particle Illusions (Boris FX)

Particle Flow (3D max)

TimeLineFx (RigzSoft)

X-Particles (Cinema4D)

PocCornFX

Thinking Particles

26

27

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 14

Just two notable examples

 Unity built-in
editor
for “shuriken”
particle systems

 Unreal built-in
editor
for “cascade”
particle system

Lack of established formats
for particle-effect assets

 Each software suit uses its own:
 set of parameters, tricks, degrees of customizability
 interface to let a FX specialist author the particle system

 ...and file formats to store that asset. Examples:
 Unity: stored as .prefabs
 Unreal: “cascade” file format
 Maya: .pdb .pda
 Renderman: .ptc
 Houdini: .geo .bgeo

28

29

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 15

Lack of established formats
for particle effect assets

 Problems:
 hard to run a particle system in a game engine unless that

particle system was authored in that engine/system
 hard to reuse or off-source particle systems across

different systems / engines

 To solve this,
a few “Esperanto” format
have been proposed
for particle systems:
 still not very established

(by Disney) (by Sony)

Particle effect:
cosmetics or gameplay?

 Typically, it’s only graphic coating
 known to increase visual realism / immersion
 communicates what’s going on to the player

(e.g., splashes = “you are walking on water”.
metal sparkles = “you have been it”)

 gameplay not affected
 this justifies many

approximations

 Remarkable
exceptions exist
 particles affecting gameplay

Portals, Valve, 2011

30

31

3D Video Games
07: Particle systems

2020-05-04

Marco Tarini
Università degli studi di Milano 16

Digression:
particle effects outside videogames

 Particle effects are used
in movies too
 the techniques are the same
 naturally, there is less need

for simplification
 intended for off-line rendering

not real time
 a few of the sw tools listed

above are specialized for
this scenario

 Additional use of particle systems in movies: fur / hair / grass.
 imagine the trajectory of each particle as shape of an individual hair

instead of the position as a function of time

Practical (and fun) exercises

 Improvise as a FX specialist
 use any of the above software

(e.g., unity or unreal)
 use its interface to create a particle system to simulate

… something (an explosion, a gush of water)
 maybe follow a tutorial

 Observe some existing particle effect
 download them from repository / asset stores
 analyze them in the interface

 Reminder: this course is does not cover any digital
artist skills, but experimenting always helps you
understanding what goes on behind the scenes

32

33

