
3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 1

3D video games

Models for Games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗

lec. 6: Game 3D Models 
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 2

Metal Slug (1996, Nazca Copr), on Neo Geo (SNK)

Solomons’s key
(1986, Temco)
on Z80

reminder:
during the ’80s – early ‘90s,
the principal asset in games
consisted in
sprites / tilemaps authored
by pixel artists ...

Triangle Meshes
The visual appearance of 3D objects

 Data structure for modelling 3D objects
 GPU friendly
 Resolution = number of faces
 (Potentially) Adaptive resolution

 Used in games to represent the visual appearance
of 3D objects
 at least, the ones which can be represented by their surface
 most solid objects (rigid or not)

 Mathematically: a piecewise linear surface
 a bunch of surface samples “vertices”

connected by a set of triangular “faces”
attached side to side by “edges”

3

4

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 3

Triangle Mesh
(or simplicial mesh)

 A set of adjacent triangles
faces

vertices

edges

Mesh:
data structure
A mesh is made of
 geometry

 The vertices, each with pos (x,y,z)
 It’s a sampling of the surface

 connectivity or topology
 Faces connecting the vertices

 Triangle mesh: faces are triangles
(what the GPU is designed to render!)

 (pure) quad mesh: faces are quadrilateral
 Quad dominant mesh: most faces are quadrilateral
 Polygonal mesh: faces are polygons (general case)

 attributes
 Ex.: color, material, normal, UV, …

5

6

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 4

Mesh: geometry

 Set of vertices
 A position vector (x,y,z) for every vertex
 Coordinates, by definition, are given in Local space!

V2

V3

V5

V4

V1

Mesh: connectivity (or topology)

 Faces: triangles connecting vertices
 More in general, polygons,
 connecting triplet of vertices
 just as, in a graph, nodes are connected by edges

V2

V3

V5

V4

V1

T1

T2

T3

7

8

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 5

Mesh: attributes

 Any quantity that varies over the surface
 sampled at vertices, and interpolated inside triangles

V2

V3

V5

V4

V1

T1

T2

T3

RGB3

RGB2

RGB5

RGB4

RGB1

Mesh as a data structure:
soup of triangles

 Simply, an array of triangles
 Each triangle stored as: sequence of 3 vertices
 Each vertex stored as:

x,y,z coordinates + attributes
 Problem: data replication
 Not very memory efficient
 Inconvenient to update

(e.g. to animate)
 Not very used

most faces are adjacent
to each other
(adjacent faces share
the same vertices)

9

10

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 6

Mesh as a data strucuture:
indexed meshes

 array of vertices
 Each vertex stored as

 x,y,z position (aka the “geometry” of the mesh)
 attributes: (all vertices, the same ones)

any data saved on the surface: e.g. color

 array of triangles
 the “connectivity» (or, “topology”) of the mesh

 Each triangle stored as
 triplet of indices (referring to a vertex in the array)

 The two arrays can be seen as tables

we can consider
positions as

attributes too

An indexed mesh in GPU ram =
two buffers

V2

V3

V5

V4

V1

T1

T2

T3

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

vert X Y Z R G B

V1 x1 y1 z1 r1 g1 b1

V2 x2 y2 z2 r2 g2 b2

V3 x3 y3 z3 r3 g3 b3

V4 x4 y4 z4 r4 g4 b4

V5 x5 y5 z5 r5 g5 b5

GEOMETRY + ATTRIBUTES

CONNECTIVITY

11

12

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 7

Mesh resolution

 Defined as the number of faces
 or vertices, equivalent because typically #F ≈ 2 ∙ #V)

 Rendering time is linear with resolution
 therefore, in games, resolution is kept small
 aka. «low-poly» models

 Resolution can be adaptive:
 denser vertices & smaller faces in certain parts
 sparser vertices & larger faces in other parts

 Resolution of typical models increases with time
 e.g. 1990s: 105 △ is hi-res
 2000s: 1010 △ is hi-res

In games: “Low-Poly” models
(low resolution meshes)

13

14

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 8

by Phillip Heckinger (3D modeller)

Low-poly models

Resolution increases over time

800 △ Unreal Tournament
(1999)

16

17

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 9

Resolution increases over time

800 △ Unreal Tournament
(1999)

Unreal Tournament 2K3
(2002)

3000 △

Resolution increases over time

800 △ Unreal Tournement
(1999)

Unreal Tounement 2K3
(2002)

3000 △

Unreal Tournament 3
(2007)

4,500 △
weapon this

12,000 △

18

19

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 10

800 △
(1999)

3000 △
(2002)

15000 △
(2006)

Resolution increases over time

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

20

21

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 11

Mesh attributes: in general
(valid for all attributes)

 Any properties stored on the mesh,
varying on the surface
 Can be made of vectors, versors, or scalars

 Stored at each vertex
 Each vertex of a mesh = same collection of attributes

 It’s interpolated inside the faces
 Linear interpolation:

uses barycentric coordinates
 Note: by construction, in indexed meshes

attributes are C0 continuous across faces
 but C1 discontinuous across faces
 and C∞ inside faces

 Position
(aka the “geometry” of the mesh)

 Normal

 Texture Coordinates
(aka the “UV-mapping” of the mesh)

 Tangent Direction

 Bone links
(aka the “skinning” of the mesh)

 Color

Which mesh attributes
are used (in games): a summary

see lecture on
animations

(later)

see lecture on
textures
(later)

see lecture on
normal maps

(later)

in
local

space!

22

23

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 12

Which mesh attributes
are used in games: a summary

 Normal
 used for dynamic re-lighting

 Texture coordinates
 aka the “uv-mapping” of the mesh
 used for texture mapping

 Tangent direction
 used for normal mapping
 used for anisotropic lighting effects

 Bone links
 aka the “skinning” of the mesh
 used for skeletal animation

 Color
 used for baked lighting (e.g. ambient occlusion)
 used for «base» («diffuse») color (RGB)

SEE TEXTURES LATER

SEE TEXTURES LATER

SEE ANIMATIONS LATER

SEE RENDERING LATER

SEE RENDERING LATER

SEE RENDERING LATER

Mesh as tables

 Position
 Normal
 Color
 Texture Coordinate
 Tangent Direction
 Bone links

Tri: W1: W2: W3:

T0

T1

T2

T3

T4

T5

T6

T7

vert X Y Z Nx Ny Nz R G B A U V Tx Ty Tz Bx By Bz

V0

V1

V2

V3

V4

GEOMETRY + ATTRIBUTES

CONNECTIVITY

24

25

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 13

Mesh attributes: colors

 In games, colors on 3D models are usually
determined by textures (not by mesh colors)
 reason: more resolution in signal

 Per vertex colors can be used…
 To cheaply add variations models

 Red guards, blue guards

 To bake lighting
 e.g. baked per-vertex ambient occlusion see rendering later

 To dynamically recolor mesh parts
 e.g. redden the tip of a sword which is blood soaked
 e.g. accumulate dirty

SEE RENDERING LATER

Mesh attributes: normals

 A versor
 Representing the surface orientation
 Main use: lighting computation
 Can be computed

automatically from
geometry...

 But it is a part of
the mesh assets:
 the artist is in control of

which edges are soft
and which are hard

26

27

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 14

Hard edges
(aka “creases”)

 Edges where the normal is not continuous .

 How to encode (C0) a discontinuity in the attributes?

Soft edge:

Red edges
are hard

answer:

Vertex seams

 Vertex seam = two coincident vertices in xyz
 (different attributes assigned to each copy)

a literal
“seam”

28

29

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 15

Vertex seams
 A way to encode any

attribute discontinuity
 Price to be paid:

a bit of data replication…

Tri: Wedge 1: Wedge 2: Wedge 3:

T0 0 1 4

T1 4 2 0

T2 5 3 6

X Y Z Nx Ny Nz

V0 𝑝𝑥𝟎 𝑝𝑦𝟎 𝑝𝑧𝟎 𝑛𝑥𝟎 𝑛𝑦𝟎 𝑛𝑧𝟎

V1 𝑝𝑥𝟏 𝑝𝑦𝟏 𝑝𝑧𝟏 𝑛𝑥𝟏 𝑛𝑦𝟏 𝑛𝑧𝟏

V2 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟐 𝑛𝑦𝟐 𝑛𝑧𝟐

V3 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟑 𝑛𝑦𝟑 𝑛𝑧𝟑

V4 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟒 𝑛𝑦𝟒 𝑛𝑧𝟒

V5 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟓 𝑛𝑦𝟓 𝑛𝑧𝟓

V6 𝑝𝑥𝟒 𝑝𝑦𝟒 𝑝𝑧𝟒 𝑛𝑥𝟔 𝑛𝑦𝟔 𝑛𝑧𝟔

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

= = =

= = =

Rendering of a Mesh
in a nutshell

 Load…
 put required data on GPU RAM

 Geometry + Attributes
 Connectivity
 Textures
 Shaders
 Parameters / Settings

 …and Fire!
 send the command: “do it” to the GPU
 (using an API)!

THE MESH

THE “MATERIAL”

30

31

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 16

Simplified architecture of PC with Video Card

32

BUS

CPU

ALU

(main)

RAM

Disk

Video Card

…Internal bus
(of video card)

RAM
(GPU)

GPU

Rendering of a Mesh
in a nutshell

 The algorithm to render a mesh (in games)
is based on rasterization
 It is outside the scope of this course. See CG course.
 In brief, three phases in cascade:

each vertex is projected on screen (“transform”),
(find where the vertex will be seen on the screen)

then each triangle is rasterized (converted into pixels)
then each pixel is processed (find the final color)

 For our purposes, rendering a mesh means just:
load all required data on the card on the GPU and
send the command to render it (the “draw call”)
 data includes the mesh itself (the two tables)
 plus the current transformations (from local space to view space)
 plus data describing the view: the “material”, including textures

Might change in
the future?

PER PIXEL PHASE

PER TRIANGLE PHASE

PER VERTEX PHASE

32

33

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 17

Rendering of a Mesh
in a nutshell
 A few things to know:

 It is a strongly parallel task
(all vertices, all triangles, all pixels can be processed in parallel)

 The entire procedure is implemented in the GPU
 It’s order-independent: we can draw mesh in any order we like.

The final result is the same
 Time cost:

O(number of vertices) = O(number of faces)
but also, O(number of covered pixels) --- so the slowest of the two

 The rendering procedure includes: animations (see later), lighting
 Because it’s GPU-implemented GPU, many things are hard-wired

 The data structures for the mesh are (indexed meshes or triangle soup)
 Only triangles as supported for faces
 Attributes are automatically interpolated inside face

 There’s a bit of customizability because GPU can be programmed
 Both the per-vertex phase (projection) and the per-pixel phase (lighting)
 “Shader” = custom program

Exception:
semi-transparent

“see through”
objects

Rendering & Scene graph

 Rendering APIs encode transforms as a 4x4 matrix
 reason: it is a more flexible, can also express perspective transforms

 To render an object:
 Combine its Transforms from Object-space to Camera-space

(“model-view transform” – in CG terminology)
 Convert it into a 4x4 matrix
 Use it during the rendering of the object
 Note: from world to camera (“view matrix”) can be computed and

used for all objects

 The model-view matrix is applied to each vertex
 In the per-vertex processing
 Combined with the “projection matrix” (from camera space to screen

space” is called “model-view-projection” matrix)

34

35

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 18

Rendering
transforms

T0 T2

T3 T4 T5 T6 T3 T4 T5 T6

world

camera

T8

for this object,
the model-view

transform is
(T଼)ିଵ ȉ Tଶ ȉ Tଷ

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

36

39

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 19

Life of a mesh in a game engine

 Import (from disk)
 Optionally, simple Pre-processing
 e.g.: Compute Normals (if needed, i.e. rarely)
 e.g.: Compute Tangent Dirs
 e.g.: Bake Lighting (sometimes)

 Render (each frame)
 GPU based
 Meaning: mesh be loaded in GPU-ram first

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
GPU

Object

Memory Management
(during game execution)

DISK CENTRAL RAM GPU RAM

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

40

41

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 20

Mesh GPU Object
(on Graphic Card)

 Buffers storing the mesh
 GPU APIs call them: Vertex Buffer Object or Vertex Arrays

 They are stored in GPU RAM
 The scarcest one !

 Ready to render!
 Choices for a Game Engine:

 storage formats, including precisions
 trade-off between storage cost / accuracy
 e.g.

 color? 8 bit per channel
 position? 16 bit per coordinate

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

42

43

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 21

Mesh
as an asset

 A file of a given format
sitting on the disk

 Choices for the game engine:
 which formats(s) to import?

 proprietary, standard…
 storing which attributes?

 Issues:
 storage cost
 loading time

LetterL.off

Example of file format for indexed
meshes: OFF format

1 5 1
0 5 1
4 3 2 1 0
4 5 4 3 0
4 6 7 8 9
4 6 9 10 11
4 0 1 7 6
4 1 2 8 7
4 2 3 9 8
4 3 4 10 9
4 4 5 11 10
4 5 0 6 11

OFF
12 10 40
0 0 0
3 0 0
3 1 0
1 1 0
1 5 0
0 5 0
0 0 1
3 0 1
3 1 1
1 1 1

vertices

faces # edges

x,y,z
2nd
vertex

1st face:
4 vertices:
with indices
3, 2, 1 and 0

index 0

index 3

index 2
index 1

44

45

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 22

File formats for meshes
(a Babel tower!)

3DS - 3D Studio Max file format

OBJ - Another file format for 3D objects

MA, MB - Maya file formats

3DX - Rinoceros file format

BLEND - Blender file format

STL - Very used for 3D Printing

FBX - Autodesk interchange file format

X - Direct X object

SMD - good for animations (by Valve)

MD3 - quake 3 vertex animations

DEM - Digital Elevation Models

DXF - exchange format, Autodesk's AutoCAD)

FIG - Used by REND386/AVRIL

FLT - MulitGen Inc.'s OpenFlight format

HDF - Hierarchical Data Format

IGES - Initial Graphics Exchange Specification

IV - Open Inventor File Format Info

LWO, LWB & LWS - Lightwave 3D file formats

MAZ - Used by Division's dVS/dVISE

MGF - Materials and Geometry Format

MSDL - Manchester Scene Description Language

3DML - by Flatland inc.

C4D – Cinema 4D file format

SLDPTR - SolidWork "part"

WINGS - Wings3D object

NFF - Used by Sense8's WorldToolKit

SKP - Google sketch up

KMZ - Google Earth model

OFF - A general 3D mesh Object File Format

OOGL - Object Oriented Graphics Library

PLG - Used by REND386/AVRIL

POV - “persistence of vision” ray-tracer

QD3D - Apple's QuickDraw 3D Metafile format

TDDD - for Imagine & Turbo Silver ray-tracers

NFF & ENFF - (Extended) Neutral File Format

VIZ - Used by Division's dVS/dVISE

VRML, VRML97 - Virtual Reality Modeling Language (RIP)

X3D – attempted successor of VRML

PLY – introduced by Cyberware – typical of range-scanned data

DICOM – by DICOM – typical of CAT-scan data

Renderman – data for the homonymous renderer

RWX - RenderWare Object

Z3D - ZModeler File format

etc

Most used mesh file formats
(most used in games)
.OBJ (wavefront)

max diffusion
 indexed, normals , uv-mapping
 no colors (only material index for face)
 no skinning or animations

.SMD ()
 Skeletal animation + skinning
 normals , uv-mapping
 no indexed!
 no colors

.MD3 (Quake, IDsoft)
 vertex animations, normals
 no colors

.PLY (cyberware)
 customizable
 “academic”

.3DS ()
 YES: colors, uv-mapping,

indexed, materials, textures…
 NO: normals
 limited by vertex number (64K)

.COLLADA ()
 complete
 Born for being interchanged
 open standard
 Almost impossible to parsing it completely

.FBX ()
 complete, with animations
 complex, hard to parse

.MA / .MB ()
 complete, with animations
 complex, hard to parse

simple complex

m
ostcom

m
on

lesscom
m

on

47

48

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 23

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

Mesh Object
(in RAM)

 A (C++ / Javascript / etc) structure
in main RAM

 Choices for a game engine:
 which attribute to store?
 storage formats… (floats, bytes, double…)
 which preprocessing to offer

(typically, at load time)

49

50

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 24

How to represent a mesh?
(which data structures)

 Indexed mode in C++ :
class Vertex {

vec3 pos;
rgb color; /* attribute 1 */
vec3 normal; /* attribute 2 */

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> verts; /* geom + attr */
vector<Face> faces; /* connectivity */

};

(2)

(1)

v3

v1

v2

Computing normals
from geometry

(1) compunte
normals of faces

(2) compute
normals of vertices

e1

e2

e1×e2

nො଴

nොଵ

nොଶ nොଷ

nොସ

nොହ

nො୴ =
nො଴ + ⋯ + nො௞

nො଴ + ⋯ + nො௞

51

54

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 25

Mesh processing:
(or, more in general, Geometry Processing)

 The algorithm above
(for the computation of per vertex normal)
is a tiny example of processing done over a mesh

 Mesh processing: the discipline of creating,
transforming, computing meshes
 inputs and/or outputs are meshes

 Part of, geometry processing:
 when the input and output are other data structure for

3D models
 See CG course for a very brief overview

Mesh processing:
typical tasks for the game industry

 Poly reduction / Retopology / Simplification
 e.g. LOD construction
 e.g. transition from (initial) hi-res to (final) low-poly

 Light baking
 Light precomputation
 e.g.: Ambient Occlusion

 U-V map construction
 parametrization / unwrapping

 Texturing
 creation of different types of textures

 Rigging / Skinning / Animation
 to animate

LATER

LATER

LATER

LATER

55

58

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 26

Useful general tools:
attribute transfer

 Given
 a source mesh M0 with attribute A
 a target mesh M1 similar (but not identical)

to M0 lacking that attribute
 Define attribute A in the vertices of M1
 Copying the attributes from M0

 Result: “retargeting” of…
 Animations, UV-mapping, textures, etc

 Results aren’t always perfect,
but can be useful as a starting point

(any, see the list!)

3D models: suorces

 Like any asset, often just bought / off-sourced

59

62

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 27

3D models:
authoring pipeline

2D concepts
/ sketches

concept
artist

3D modeller
low-poly

mesh

Mesh:
authoring

 Task of the 3D modeller
 A type of digital artist

 Popular 3D modeling approaches:
 Manual low-poly modelling

 e.g. with wings3D

 Subdivision surfaces
 e.g. with blender

 Digital sculpting
 e.g. with Z-brush

63

64

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 28

Mesh authoring (aka 3D modelling):
a few applications

 3D Studio Max (autodesk) ,
Maya (autodesk) ,
Cinema4D (maxon)
Lightweight 3D (NewTek),
Modo (The Foundry) , …
 all-purpose, powerful, complete

 Blender
 the same, plus open-source and

freeware (compare: Gimp VS. Adobe
Photoshop for 2D images)

 MeshLab
 open-source, big collection of

geometry processing algorithms …

 AutoCAD (autodesk),
SolidWorks (SolidThinking)
 for CAD

 ZBrush (pixologic) (+ Sculptris),
Mudbox (autodesk)
 Sculpting (inclusing texturing)

 Wings3D
 low-poly modelling (& subdivision surfaces)

open-source, small, specialized

 [Rhinoceros]
 parametric surfaces (NURBS)

 FragMotion
 small, specialized on animated meshes

 + a many more for specific contexts
 editing of human models, of architectural

interiors, environments, or specific editors
for game-engines, etc...

Low-poly modelling (demo)

Note: during creation, the meshes can be polygonal instead of triangle based, but is
simple to decompose any polygon into triangles
E.g. this can be done by the game engine as a simple preprocessing.

1 2

3 4 5

a cube

with wings3D

65

66

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 29

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D artist) [link]

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D modeller) [link]

68

69

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 30

3D mesh authoring techniques:
subdivision surfaces

 Subdivision step:
an algorithm that operates on a mesh
and obtains a higher resolution, smoother mesh

 Can be iterated

Catmull Clark (CC) subdivision

Example: with
Catmull-Clark scheme

level 0
“control mesh”

level 1 level 2 lvl ∞
“limit surface”

…

level 4

70

71

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 31

3D mesh authoring techniques:
subdivision surfaces

 Many subdivision algorithms (schemas) exists
 each with its own properties

 Produces clean, regular meshes
 Excellent for smooth, curved,

organic looking objects

famously pioneered
by movie industry

(not games):

Subdivision surfaces as a tool…

 …to encode smooth surfaces
 Idea: we encode the control mesh to

represent the limit surface
 use in games: rendering (now, rare – but popular around 2015)

1. keep control mesh in GPU ram
2. let 1-3 subdivision steps happen during rendering

 …to author 3D meshes
 idea: alternate (low-poly) editing and subdivisions steps
 at first steps: edit global shape
 at last steps: edit minute details
 use in games: during asset creation, by artists

72

73

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 32

Subdivision surfaced
as way to define (curved) surfaced

 Modeler creates a low-poly mesh, the “control mesh”
 control mesh: piecewise linear (i.e., flat) surface

 The control mesh is subdivided (in theory ∞ times)
and a “limit surface” is obtained
 limit surface: curved & smooth surface

 The control mesh is a representation
of the limit surface
 note: the subdivision steps are only performed on the fly,

during rendering
 the more step are done, the better the limit surface is

approximated

Subdivision surfaces
as a mesh authoring tool

1. Create a coarse mesh with a very approx. shape
 e.g., using low-poly modelling

2. Apply subdivision step
 a higher resolution model

3. Re-edit results
 Retouch all the smaller parts

4. Goto 2, until good final result

74

75

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 33

Subdivision surfaces
as a mesh authoring tool (example)

SUBDIV

S
U

B
D

IV

SUBDIV

Doo-Sabin subdivision

Example of subdivision schema:
“Butterfly” (used for tri-meshes)

 It’s a “1-to-4 schema”
in a subdivision step, each triangle is split into 4
by adding one vertex in each original edge

Subdivision
step

For more info, see Computer Graphics course

77

81

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 34

Subdivision surfaces in general

 A step typically increases resolution by a factor x4
 The geometry of the subidvided mesh (3D points) is

computed according to a formula of the pos of their
neighbors.
 In some schemas (called interpolative), the old vertices are

kept at the same positions
 In other schemas (called approximative), old vertices are

kept but moved into a new position
 In other schemas (called dual) older vertices aren’t kept

 Most created vertices are regular

An example with Catmull Clark

82

84

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 35

Some existing subdivision schemas

 Doo-Sabin
 operates on any polygonal mesh
 produces polygonal meshes

 Loop
 1-to-4 scheme for triangle meshes (only)

 Butterfly
 1-to-4 scheme for triangle meshes (only)

 Catmull-Clark
 operates on any polygonal mesh
 produces quad-meshes
 traditionally, movie-industry favorite
 a recent trend in games: use during mesh rendering

3D Mesh authoring:
approaches

 Popular 3D modeling approaches:
 Direct low-poly modelling

 e.g. with wings3D

 Subdivision surfaces
 e.g. with blender

 Digital sculpting
 e.g. with Z-brush,

(or Sculptris Alpha)

88

90

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 36

Digital Sculpting

chisel
mouse

(or stylus)

=

Digital Sculpting

 demo

with wings3D

91

92

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 37

Sources for 3D models:
3D acquisition

 3D acquisition / 3D scanning
 Technologies for obtaining

3D digital models
from
real-world objects

3D acquisition
(e.g., range scanning)
(specifically, here, laser scanning)

For more info, see Computer Graphics course

Sources for 3D models:
3D acquisition

Reale model

Sculptor
(real)

Hi res model

3D scanning

93

94

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 38

Sources for 3D models:
3D acquisition
 3D scanning

 A.k.a. automatic 3D model acquisition
 Lot of different technologies

 Laser scanners
 Time of flight
 Structured light (kinect)
 …

 Different characteristics
 Results quality

 Noise / resolution
 Automatism
 Invasiveness

 Markers? Powder?
 Real time? (kinect)
 Price
 Max object dimension

 (full body scanner?)

3D models sources:
comparison

scanned & cleaned
hi res mes

(30K triangles)

(sculpted meshes are similar)

manually edited
low-poly mesh
(2K triangles)

PERFECT for games!
(much easier to: animate,
re-edit, uvmap, …)

VS
Dino,
scanned
by artec3d

95

96

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 39

Sources for 3D models:
procedural modelling

Procedure that
creates the meshes

parameters

Procedural modelling – see also…

http://everythingprocedural.com/ this week
Game-of-the-Week

97

98

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 40

Notes about mesh resolution

 all costs: linear on the triangles number
 in memory (disk, CPU RAM, GPU RAM)
 in time (rendering, loading, etc)

 (and, linear with # of vert. with # triangles)
 (rule of thumb: K verts  2K tris)

 reminder: possible adaptive resolution
 higher-res in some parts
 lower-res in others

Rendering quality
and resolution

Una piramide di Livelli di Dettaglio
p e r f o r m a n c e

q u a l i t y

99

100

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 41

LoD pyramids
(Level Of Detail)

LoD 1
2K faces

LoD 2
400 face

LoD 3
160 faces

LoD 4
60 faces

use when seen up
close

use when seen
from afar

LoD pyramids
(Level Of Detail)

<5 m 5m ..10 m 10 .. 30 m >30 m

101

102

3D Video Games
08: Meshes in Games
Part 1/2

2021-04-22

Marco Tarini
Università degli studi di Milano 42

LoD pyramids
(Level Of Detail)
 Goal:

 decrease the geometry budget (total number of vertices)
 ideal: size of triangles in screen space (in pixel): constant

 (if importance / complexity is the same)
 Task: determining the level to use (dynamically, at runtime)

 depending on observer distance
 and/or, depending on rendering workload

 e.g.: rendering is lagging ⇒ decrease LoD
 this is task of the rendering engine)

 Task: LOD creation or “LOD-ding” (during asset creation)
 starting from LOD-0 (higher-res)
 manual, or automatic (see later on), or assisted (mixed)

 often manual
 note: sometimes “LoD 0” is used only in special cases

 e.g. during a cut-scenes

computed from
scene graph
(how?)

LoD pyramids
(Level Of Detail)

LOD 0
(mesh)

G
E

O
M

E
T

R
Y

+
A

T
T

R
IB

U
T

E
S

C
O

N
N

E
C

T
IV

IT
Y

LOD 1
(mesh)

GEOMETRY
+ ATTRIB C

O
N

N
E

C
T.

LOD 2 (mesh)

G. + A. C.

~ ¼ size

1 K + ¼ K + ¼ ¼ K + ¼ ¼ ¼ K + …

= (1+ ⅓) K

Total memory usage: limited
For instance:

…

~ ¼ size

103

104

