
3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 1

3D VideoGames 2020/2021
Università degli Studi di Milano

Artificial Intelligence
in 3D Games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models 
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

For a general, deeper discussion
of many of the subjects

of this lecture, see the course
«AI for videogames»

1

2

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 2

Game Engine

 Handling common task of a game dev
 Game logic (levels)
 Renderer

 Real time transoform + lighting
 Models, materials …

 Physics engine
 (soft real-time) newtonian physical simulations
 Collision detection + response

 Networking
 (LAN)

 Sounds (mixing and “sound-rendering”)
 Handling input devices
 Main event loop, timers, windows manager…
 Memory management
 Artificial intelligence module

 Solving AI tasks
 Localization support
 Scripting
 GUI (HUD)

Animations
scripted or computed

AI / ML
in the real world

 Huge advancement in recent years!
 e.g., with deep learning

 (neural networks… refurbished)!
 huge increase of manageable data size
 data used straight as input for learning

 e.g., in data mining
 e.g., in computer vision

 Reasons:
 algorithm breakthroughs
 computational power!!!

 e.g., GP-GPU

3

4

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 3

AI in games:
many uses
 Procedural… anything

 terrain
 levels

 e.g. maze generation, generation of (solvable!) puzzles…
 music, models, etc!

 Dynamic difficulty tuning
 learning when/how to increase/decrease difficulty
 virtual “movie director” concept

(e.g.: “time to intensify action: spawn more zombies”
/ “time to slow down pace: spawn less zombies”)

 Ranking
 algorithms to estimate rank of players, from game outcomes

(e.g. in chess / go communities)
 An intelligent tutor / advisor

 e.g. an non-intrusive game tutorial
telling players only what they (seem to) need to hear

 …

e.g., look up “Sokoban”

Main course:
“Artificial Intelligence for Video Games”

AI in games:
one important use (trending in research)

 Procedural Character Animations
 i.e. “learn how to run, walk, stand up, …”
 Input:

 a character body: skeleton structure,
with “muscle” actuator
 muscle = springs with AI-controlled strengths

 a given task, e.g.
 go as fast as possible in this direction
 stand up from prone position
 reach the highest possible point (i.e. jump)
 …

 Output:
 how to activate muscles to do it
 (minimizing used energy)

 How:
 genetic algorithms, Evolution strategies
 physical simulation to score candidates

skeletal animations

rig

trivial to
measure
(score)

5

6

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 4

AI in games:
The main use: NPC behavior
Widely different AIs for widely different “NPC”s!
 A wild animal
 An (enemy) soldier
 A squad leader
 An (innocent) villager / bystander
 An individual in a crowd / flock / herd
 A racing car driver
 A spaceship pilot / gunner
 A companion / buddy
 An (enemy) commander
 A zombie
 A heat seeking missile
 A WWII ace pilot
 …

use
“flocking algorithms”

(or “crowd simulation”)

the AI player
in a RTS

“AI” for NPC behavior:
Interactive Agents (IA)

 Many differences with “problem-solving” AI:
 “cheating” completely possible

 e.g., info “magically” available to the Interactive Agent
 real-time response always needed

 very frequent decisions of the Interactive Agent (30-60 Hz!)
 “on-line”, and “soft real time”

 sub-optimal often required

 NPC behavior also determined by:
 story telling needs

 e.g. follow designed behavior, adhere to designed personality
 difficulty tuning (e.g., for enemy NPCs)
 need to interesting / fun (≠ optimal!)
 need to be realistic / believable

 not necessary, coherent / logical / optimal

7

8

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 5

Designing NPC behavior:
not necessarily intelligence
NPC behavior is not necessarily
 “intelligent”
 complex
Rather, NPC behavior needs be often to be:
 intuitable / predictable
 learnable
 understandable
 story driven?
 interesting to exploit
 uses:

 tune difficulty
 elicit interesting strategies by the player
 make a given strategy rewarding

 etc.

Game AI -vs- AI to solve Games

In a word:
entertainment, not problem solving !

to find more about AI to (optimally) play games,
look for:

 min-max algorithms (with pruning)
 algorithms to solve

complete knowledge, turn based games
 Nash equilibrium (from Game Theory)

 solution concept to address
non cooperative games

9

10

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 6

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

INTERACTIVE
AGENT

EN
VIRO

N
M

EN
T

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

11

14

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 7

Controls and Agent
(a useful abstraction)

scenario: single player VS ai

Player Agent

NPC Agent

virtual environmentvirtual environment

Player

AI

EN
VIRO

N
M

EN
T

Interactive Agent

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

18

20

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 8

Acts :
In robotics, “actuators”. In 3D games?

 Produce “Controls”
 associated to the NPC character
 a non-cheating AI controlled NPC (simulation of a player)

 Animations
 Movements / displacements
 Sounds

 voices, yells
 Orders (issued to other agents)

 (e.g. in an RTS)
 Effects on game-logic

 e.g. objects appearing, doors unlocking,
HP decreased / healed, money spent / gain, etc

EN
VIRO

N
M

EN
T

Interactive Agent

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

21

22

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 9

Sensing
(in robotics, by “Sensors”. In games?)

 Gather info (“percepts”)
 which will be used for the “think” phase
 NB: this info must often persist in the “mind” of the agent!

 more abut this in the next phase
 Performed at regular intervals, or “on demand” (by the AI)
 Simulating senses in a 3D world…

 Sight
 way1: ray-casting

 (uses ray-VS-hitbox collision)
 way2: synthetize then analyze probe renderings! (accurate, expensive)

 Hearing, Smell
 simple testing against influence sphere

 Touch / Proximity sensing:
 collision detection / spatial queries

 …or “cheating” (common)
 “magically” sensing data straight from the game status
 (simple, and often ok – when plausibility not compromised too much)

e.g. the scene
graph

Simulating senses
in a 3D environment

Sound wave

Occluded

Unoccluded

Sight Hearing

23

24

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 10

Simulating senses in a 3D env.
Example: sound (with echos)

 Pathfinding for echos simulation

example from Tendril: Echo Received by cepnox https://forums.tigsource.com/index.php?topic=60709.0

EN
VIRO

N
M

EN
T

Interactive Agent (IA)

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

25

26

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 11

Thinking phase
(aka Planning)

 Status of the AI: modeling the “AI-mind”
 current goals

 hi-level, low-level… (more about this later)
 internal model of the environment (as perceived by IA)

 built through the sensing phase
 occasionally, also obtained

from (simulated) communication with other NPCs
 can be arbitrarily complicated, or very simplistic

 moods/mindsets
 internal values modelling the varying lvl of:

fear, patience, rage, distress, confidence,
hunger/thirst, fondness toward player, etc

 persistence of these mind elements
can be made more or less prolonged
 e.g. deleted, to model agent forgetfulness
 e.g. deleted, to reflect awareness that data went stale

Thinking phase
(aka Planning)

 Typically, Hierarchical Logic
 Hi-level Decisions => Hi-Level Goals

 update: not very often

 …
 Lower-level Goals

 update: more often

 …
 Lowest-level Goals

 solving low level tasks

 Acts!

27

28

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 12

Authoring an AI for an NPC

 Cascading goals

 Hi-Level Goals

 Low-Level Goals

 Lowest-level Goals

 Acts

Authoring an AI for an NPC:
classic approach

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

FSM

Scripts

Scripts /
Hard-Wired
Subroutines
(by the AI engine)

29

30

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 13

Example: terrified bystander

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m “Escaping”

I’m going to that
hiding spot

I’m passing through here
(find route to it -- navigation)

(actual movements +
“panicked-run” animation)

Example: WWII soldier

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m Sniping

I’m going for that
enemy soldier

I’m aiming at this (x,y,z)
(the center of his exposed head)

crouched-aim animation
+ turn left by 2.5 deg
+ IK to re-orient rifle vertically

31

32

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 14

Example: guard

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m “Patroling”

I’m going to
3rd Nav point

I’m passing through here
(find route to it -- navigation)

(actual movements +
“alerted-walk” animation)

Background FSM
(more technically: Moore machines)

 Nodes = states
 Arches = transitions

 associated to arches: input (senses, events)
 associated to states: output (actions)
 current state: state of the IA mind

33

34

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 15

FSM example: a guard

PATROLLING INVESTIGATE ATTACK

see / hear
anything suspicious

(distant player, corpse…)

timeout /
zero “patience” reached

see
near player

sight lost

FSM in practice

 Just a scripting guideline
 one “status” variable
 transitions: manually coded in

 Or, a behavior authoring tool
 intended for the AI designer
 hardwired support, by game AI engine
 maybe WYSIWYG editor
 transitions: conditions (to be checked automatically)
 statuses: linked to effects (sound, animation,…)
 (small advantage: avoids real time

script interpretation ==> can be more efficient)

if (status==PATROLING)
then doPatroling();

if (status==ATTACK)
then doAttack();

procedure doPatroling(){
// …
if next_nav_point reached …

// state transitions
if (target_in_sight)

then status = ATTACK;
}

36

37

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 16

Authoring an AI for an NPC:
more tools

 Problem with the FSM approach :
 does not scale well

with world / behavior complexity
 quickly produces very complex nets
 (ok, for simple behavior)

 Alternatives:
 HFSM
 Behavioral Trees

unified handling of all levels;
blur classic distinction between
hi-level / low-level planning.

also blur classic distinction between
sensing / thinking / acting

HFSM
Hierarchical Finite State Machines

38

39

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 17

HFSM: concept

 A FSM where a state can be a sub-FSM
 meta-state = sub-FSM
 meta-transitions =

checked from any state of the current sub FSM
 recursive (multiple levels)

 Advantages:
 easier design
 aids reusing chunks of behavior

(from an AI to another)

Behavioral Trees

patrol

investigate

attack

aim

move

shoot
turn left turn right

40

41

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 18

Behavioral Trees

= interface between IA and environment: acts, sensing (queries)

Behavioral Trees:
nodes

 every node, when it has done running, can either have:
failed
succeeded

 leaves are interaction with environment
 action leaf:

 animations, movements, sound, game logic…
 Success: done it.

Failure: could not do it
 (e.g. movement negated by obstacle, object not in inventory…)

 sense leaf :
 queries on senses, on game status, …
 Success / Failure: query result

 (e.g see / not see an obstacle in front of IA)
 the distinction not necessarily strict

42

43

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 19

Behavioral Trees:
nodes

 internal nodes: sequence

Behavioral Trees:
nodes

 internal nodes: sequence

44

45

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 20

Behavioral Trees:
nodes

 internal nodes: selector

Behavioral Trees:
nodes

 internal nodes: selector

46

47

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 21

Behavioral Trees:
nodes

 internal nodes: inverter

! !

Only child

Behavioral Trees:
nodes

 or, nodes can be programmed arbitary
(scripted procedure) (in LUA, C#, …)
 run children, as calls
 fail or succeed, as returned value

LUA

BT as
a framework to
structure /
reuse /
organize
scripts

48

49

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 22

Compute behavior:
visit tree

LUA

doing it…

Compute behavior:
visit tree

LUA

doing it…

50

51

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 23

Compute behavior:
visit tree

LUA

doing it…

Compute behavior:
visit tree

LUA

doing
it…

52

53

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 24

 Each node can be:
 failed
 success
 in progress
 (or still unvisited)

 Current IA-mind status: path from root to leaf
 Nodes in the path are
 Low depth nodes: high-level objectives
 Hight depth nodes: low-level objectives
 Leaf of the path: current action / sensing action

Behavior trees: notes

Example 1/3

Example by Chris Simpson (gamasutra)

Sequence

54

55

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 25

Example 1/3

Sequence

Example by Chris Simpson (gamasutra)

Example 1/3

Sequence

Example by Chris Simpson (gamasutra)

Inverter

56

57

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 26

Example 1 - 1/3

Sequence

Example by Chris Simpson (gamasutra)

Example 1 - 2/3

Sequence

Example by Chris Simpson (gamasutra)

Selector

Sequence

58

59

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 27

Example 1 - 3/3

Sequence

Example by Chris Simpson (gamasutra)

Selector

Sequence

Sequence Sequence

Selector Selector

Example 2

example from Tendril: Echo Received by cepnox https://forums.tigsource.com/index.php?topic=60709.0

60

61

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 28

Thinking phase
(aka Planning)

 Typically, Hierarchical Logic
 Hi-level Decisions => Hi-Level Goals

 update: not very often

 …
 Lower-level Goals

 update: more often

 …
 Lowest-level Goals

 solving low level tasks

 Acts!

such as…

 Face towards something
 tip: remember atan2
 actions: turn left or right

 Aim a weapon
 e.g. including ballistic

 to predict, use analytical physics: pos(t) = f(t)
 e.g. including “leading the target”

 i.e. aim at where target will be
at time of impact

 Avoidance / dodging
 of an incoming bullet

 …

Examples of common
lowest level tasks (1/2)

vec3 target_pos = target.pos;

float target_dist = dist(me.pos , target_pos);
float eta = target_dist / bullet_speed;
target_pos = target.pos + target.vel * eta;

face_towards(target_pos);
repeat a few times
(converges really fast)

62

63

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 29

Often easier to think in local object
space of the IA

T

T

-1

World space agent object space

Common lowest level tasks 2/2:
Path finding

 Path finding
 Dijkstra’s algorithm
 A* search

64

65

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 30

Dijkstra algorithm

5

2

1

13

4
9

3

5

5

7

3

5

8

6

4

4 2

Dijkstra algorithm

5

2

1

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

4

0

2

67

68

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 31

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

2

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

4

2

69

70

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 32

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

4

9

4

2

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

2

71

72

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 33

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

2

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

7

10

2

73

75

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 34

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

7

10

9
17

2

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

7

10

9
17

10

2

76

77

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 35

Dijkstra algorithm

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

7

10

9
17

10

2

A* search

5

2

1

13

4
9

3

5

5

7

3

5

8

6

4

4 2

78

79

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 36

A* search

5

2

1

13

4
9

3

5

5

7

3

5

8

6

4

5+5

2+6

9+9

4

0

2

5?

6?

9?

9+9

2+62+6

5+5

A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

4?

7?9?

7+4

6+7

3+9

80

81

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 37

9+9

2+62+6

5+5

A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

7+4

6+7

3+9

5+5

9+9

2+62+6

5+5

A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

7+4

6+7

3+9

5+5 7+4

14+4

4?

0?10+0

82

83

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 38

9+9

2+62+6

5+5

A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

7+4

6+7

3+9

5+5 7+4

14+4

10+010+0

9+9

2+62+6

5+5

A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

7+4

6+7

3+9

5+5 7+4

14+4

10+010+0

84

85

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 39

9+9

2+62+6

5+5

Compare:
A* search

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

00

2

6+9

7+4

6+7

3+9

5+5 7+4

14+4

10+010+0

Compare:
Dijkstra

5

2

1

4

13

4
9

3

5

5

7

3

5

8

6

4

5

2

9

00
2

7

6

3
6

3

44

9

5

6

7

10

9
17

10

2

86

87

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 40

Input of Dijkstra algorithm: notes.
 graph (nodes, arches)

 nodes = locations where IA can be
 arches = path to go from node A to node B, such as…

 straight line paths A to B (to be run / walked)
 a potential jump reaching B from A
 drop down from A to B (note: arches are not necessarily bidirectional!)

 a (positive!) cost, associated to each arch
 e.g., estimated time to go from A to B
 in general, this reflets the willingness of the IA to pass through there
 flexible! easy to adapt costs to reflect specific scenarios, e.g.:

 “that path is vulnerable to enemy shooting”: higher cost
 “that path is across lava. It hurts! (costs HP)”: higher cost
 “that path occludes friendly fire lines”: higher cost
 “I risk being spotted on that path (I don’t want to be seen)”: higher cost

 Start node and Destination node(s)
 Destination nodes can be multiple

Dijkstra algorithm: notes.
 Any nodes is visited / processed only once

 Or zero times! Not all nodes are visited
 The algorithm requires to keep track of a set of

“active” nodes
 (in yellow, in the graph)
 nodes are removed and added to this set
 it is necessary to find the minimal element of the set
 → ideal data structure for this : heap (priority queue)

 Output: path from Start node to Dest node
 it’s guaranteed to be the minimal-cost path
 the path with the minimum associate cost
 also, the cost of this path
 also, a minimum span tree of all visited nodes

(results can be reused for all visited nodes)

88

89

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 41

A* algorithm: (“A-star”) notes
 Dijkstra not efficient enough

 visits too many nodes
 explores paths which are

obviously wrong
 it’s greedy, only guided only by distance from Start)

 “A* search” is a variation. Main idea:
smarten up! with an estimate of the remaining distance to Dest
 function ℎ(𝑋) – with 𝑋 being a node:

returns an estimate of the minimal cost to go from x to Dest
 ℎ is provided by the user
 it must be: fast (constant time, possibly)
 it must be: strictly optimistic!

produced estimations AT MOST the real cost (never more)
– underestimation ok, overestimation NOT OK

 good example: simple Euclidean distance (disregarding obstacles!)
 Output: still the optimal path

 as long as the estimator never overestimates costs
 the better the estimations, the quickest the algorithm

 e.g.: if ℎ(𝑋) is always 0 (technically correct): same as Dijkstra
 e.g.: perfect estimation (hypothetical case): only explore nodes in optimal path

6+7
Minimal cost (e.g.

time) to go from
Start to here

Estimated
(minimal!)
cost to go
from here
to Dest

Which graph to use
for A* / Dijkstra in a 3D game?
 Answer: Nav-meshes (“Navigation meshes”) or AI meshes

 a polygonal mesh
 faces: graph nodes

(places where
the NPC can stand)

 edges between faces:
graph arches
(passage the NPC
can traverse)

90

91

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 42

Nav Mesh (manually designed)

Baking a 3D Nav-Mesh

 Input:
 the scene graph
 static 3D collision proxies in its nodes
 a proxy for the NPC (e.g. a capsule)

 Baking
 Find nodes

 places where an NPC can stand. How: collisions tests
 Find arches, for each type of movement

 Walk: dynamic collision test to determine
if it is possible to go from A to B

 Jump up: heuristics about height differences
 Jump down: other 3D spatial heuristics

 Add costs (e.g. time estimations)
 Add ad-hoc or dynamic behavior

 E.g. add/remove arches when a door gets unlocked/locked,
 Add/remove arches when a magic teleport portal is activated/deactivated,
 etc

92

94

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 43

Customizing A* / Dijkstra

 Cost function ≠ time or distance
 Customize the costs freely

 E.g. doors: add cost to open them
 E.g. in a shooter:

 Increase cost of nodes currently “under friendly fire”
(“don’t get in the line of fire of your friends”

 Increase cost of exposed nodes
(“don’t get caught in the open”)

 Remember: A* needs underestimations
 Decreasing costs requires care
 E.g. add teleport doors? Be careful

find out with 3D raycasts

Nav Mesh: Unity

95

96

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 44

Nav-Mesh baking:
example in Unity

Nav-Mesh baking:
example in Unreal

97

98

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 45

Flocking algorithms

 A mid-level objective: “stay with the group”
 but “not too close”

 Each element of the swarm targets the position of
the 3D barycenter swarm
 But avoids collision with closer members

 ==> decent flocking behavior emerges
 E.g. flock of birds, school of fishes
 But this is just the ABC of flocking algorithms
 Many subtilities can be added

Other mid-level objectives
in 3D games

 Often, completely ad-hoc strategies:
 E.g. driving games:

compute-and-bake (or manually edit)
the optimal 3D path in each racing circuit
 e.g. as a b-spline curve or as a segmented curve

 Just make NPC cars target the path position ahead of
them (mid level), but avoid collisions (low level)

 => decent racer behavior emerges

99

100

3D Video Games
12: AI for 3D Games

2021-05-20

Marco Tarini
Università degli Studi di Milano 46

AI support in a game engine:
a summary

 Assets for (NPC) AI:
 for behavior modelling:

 Scripts (can well be the only one)
 FSM
 HFSM
 BT

 for navigation:
 nav-meshes (aka AI-meshes)

 for sensing / queries:
 hit-boxes, bounding volumes, spatial indexing
 the same ones used by physic engine for collision detection

 Game tools
 to assist their construction (by AI designer)

 Support for a few hard-wired functions
 to solve lowest level tasks om a 3D environment

To investigate further
 AI for VideoGames course!
 Books:

101

102

