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In which space to compute 
the lighting?
 All versors that used in any operation in the lighting equation

must be expressed in the same space
 view direction, light directions, half-way vector, normals, tangent dirs…

 Choice: which space to use?
 View space? (the space of the camera)
 World space?
 Local object space? (the space of the object currently being rendered)

 With normal maps, the most efficient solution is:
 Use the same space the normals are expressed, in the texture

For Tangent Space normal maps: the TBN space
 All other versors must be transformed into this space… per vertex!
 The normals accessed from the texture can be used right away… per pixel!
 This minimizes the amount of transformations needed

 In this lecture, we’ll get a better understanding of the difference

for anisotropic materials

3D Videogames 2020/2021
Univ. degli Studi di Milano

Rendering in games
Part II: standard rendering 
algorithms for 3D games
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Rendering in 3D games

 Real time
 (20 o) 30 o 60 FPS

 Hardware (GPU) based
 pipelined, stream processing

 therefore: one class of algorithms (hardwired)
 rasterization based algorithm
 recent trend: switch to ray-tracing algorithms?

 Complexity:
 Linear with # of primitives
 Linear with # of pixels

High-level view of mesh rendering

To render a mesh:
 load in GPU RAM:
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET

In this lecture, we’ll go lower level
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Graphic card
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Rendering of a mesh = 
rasterization of all its triangles

x

y z

𝐯0  = ( 𝑥0, 𝑦0, 𝑧0 ) 

𝐯1  = ( 𝑥1, 𝑦1, 𝑧1 ) 

𝐯2  = ( 𝑥2, 𝑦2, 𝑧2 ) 
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Example: full API for the GPU pipeline (OpenGL) 1/2

Example: full API for the GPU pipeline (OpenGL) 2/2
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GPU pipeline –
a simplified conceptual version

3D vertex
+

attributes

fragment
process

final
RGB
pixel

fragments
(“wannabe pixel”)

vertex
process

z x

v0
v1

v2

rasterizer

y

2D screen 
triangle

v0
v1

v2

Rasterization based rendering: 
steps (remarks 1/2)
 Vertex processor:  (per vertex)

 Input: vertex data (position + initial attributes)
 Output: a final screen position, 

and other (refined) attributes

 Rasterizer: (per triangle)
 Input: a triplet of processed vertex (with attributes)
 Output: many “fragment”, one for each pixel covered by the triangle, 

each with interpolated attributes

 Fragment shader: (per fragment)
 Input: a fragment (with attributes)
 Output: a final rgb color (plus: an alpha value, plus: a depth value)

 Output combiner: (per fragment)
 Writes the rgb color on the screen buffer
 Overwrites, blends, or preserves the old value

It’s a SIMD architecture:
Every step does the same
processing on several inputs,
producing several output,
all in parallel,
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Rasterization based rendering: 
steps (remarks 2/2)

 It’s a pipelined architecture:
every step works in parallel with all others
 E.g., while fragment are processed, the next triangle is 

being rasterized, and the next vertices are processed

 It’s a SIMD architecture:
Every step does the same processing on several 
inputs, producing several output, all in parallel,
 E.g., several fragments are processed at the same time

(each one independently from the others)
 E.g., same for vertices

Rasterization based rendering: 
what is done in each step (examples)

 Per vertex:
 projection: transform from object space to screen space

 skinning:  transform from rest pose to current pose

 Per triangle: (rasterizer)
 rasterization
 interpolation all per-vertex attributes  ←nota bene!

 Per fragment:
 lighting: from normal + lights + material to RGB

 texturing: i.e., textures are accessed in this stage

 alpha-kill: (almost) fully transparent fragments are removed

 Per fragment: (output combiner, after the fragment shader)
 depth-test: occluded pixels are removed

 alpha-blend: semi-transparent fragments are mixed with background

the 
Vertex 

Shader

the 
Fragment

Shader

hard 
wired

hard 
wired
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GPU pipeline – bottlenecks 
(remarks and terminology)

 Like in any pipeline, the process goes as slow as its slowest stage
 i.e., the «bottleneck» of the pipeline determines the total speed
 Any other stage is idle for part of the time (which is always a waste)

 stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)

 stages after it are «starved» (they wait for input from previous stage)
 Bottleneck terminology: (in CG) 

 If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)

 If the bottleneck is per fragment, the app is fill-limited
(«it cannot fill the screen buffer with pixel fast enough»)

 Performaces (rendering FPS) of a game only impoves 
if computational load is removed from the bottleneck phase
 Example: 

using all meshes at LOD 1 instead of one does not help a fill-limited app
 Example: 

reducing the resolution of the screen does not help a geometry-limited app
 Using a simpler lighting model does not help a geometry-limited app

MORE COMMON 
CASE, FOR GAMES

Rasterization-Based Rendering

3D 
vertices

per
fragment

final
pixels

"fragments"

per 
vertex

z x

v0
v1

v2

per 
triangle

y

2D triangle
on screen

v0
v1

v2

PROGRAMMABLE:
a user-defined

"Vertex Shader"
(or “vertex program”)

PROGRAMMABLE:
a user-defined

"Fragment Shader"
(or “pixel program”)

HARD-WIRED in the GPU
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In many game engines,
shaders are part of the “material asset”

To render a mesh:
 load (in GPU RAM):
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET

Programming languages
for writing shaders

 High level:
 HLSL (High Level Shader Language, Direct3D, Microsoft)
 GLSL (OpenGL Shading Language)
 CG (C for Graphics, Nvidia)
 PSSL (PlayStation, Sony)
 MSL (Metal, Apple)

 Low level:
 ARB Shader Program 

(the “assembler” of GPU – now deprecated)
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basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product

Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 which is sent to the screen

 …also produces a depth-buffer
 as a by-product!
 not set to the screen: it’s an “offline” buffer
 it’s used during the rendering to determine occlusions

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it’s covered by that something)

 see computer graphics course for more details

 many rendering algorithms exploit the depth-buffer 
 for different uses
 for each pixel on the screen, we have not only its RGB value, but its depth 

value (a scalar from 0 – close to the camera, to 1 – far from the camera)

a 2D array
of RGB values

of some 
resolution

a 2D array
of depth values

(scalars in 0 to 1)
of the 

same resolution
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SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)

basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP
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basics: Double Buffering
 To render a scene, all meshes are rendered succession

 Filling the screen buffer

 Double-buffering is a basic technique to prevent any 
incomplete buffer to ever reach the screen
 E.g., a rendering where some of the meshes is still not rendered

 How it works:
 We have two RGB buffers: the front-buffer and the back-buffer
 The front buffer shows the last complete rendering 

and is the one the screen shows
 The back buffer is filled by the renderings, but it is not shown

(it’s yet another example of “off-screen buffer”)
 Screen Swap: When the back buffer is ready, the two buffer are 

swapped (instantaneously)
 Info about variants: look up what “V-sync” means in 3D games settings
 Observation: the depth-buffer is not doubled

basics: Per-pixel lighting

 Typically, lighting happens at the per fragment (per pixel) stage
 the cheapest option, compute lighting per vertex,

(and interpolate the resulting final RGB)
saves computation but impacts quality 
(and disallows normal-maps and textures)

 Non uniform material parameters are 
 gathered from textures with texture accesses
 or interpolated from per-vertex attributes (cheaper)

 Because lighting equations are now quite complex, this burdens 
the per-pixel stage considerably!
 For this reason, games are often fill-limited

formerly known 
as “Gouraud shading” 

heavily optimized,
but still expensive
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basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

TEXTURES

“Render Target”

per
fragment

basics: 
Render to Texture

per 
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triangle
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GEOMETRY TEXTURE

TEXTURES

per 
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GEOMETRY
SCREEN 
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“Render Target”

“Render Target”

other 
accesses

per
fragment

per
fragment
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Multipass rendering techniques 
(general concept)

 1st pass: fill an internal 2D buffer
 i.e., an “off-screen” buffer (a buffer never shown to the user)
 it’s the output of this rendering, i.e. its “render target”
 normally, the render target is the “screen buffer”

(the buffer shown to the screen)
 this technique is aka “render to texture”

 2nd pass: fill the final screen buffer
 using the just-computed internal buffer as a 2D texture

 Note: efficient because…
 the off-screen buffer is either only write-only (1st pass) 

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU!

Example: metallic reflections
of dynamic scenes

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting
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img by Tze-Yiu Ho

Env-Map
(6 images)
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fragment
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Scene
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SS Final

Screen-Buffer
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Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER

per 
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting
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 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single 
full-screen

quad

per
fragment

2n
d 

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth 
buffer

per
fragment

per 
triangle

per 
vertex
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t P
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S

Deferred shading 
 Advantage: 

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage: 
needs a separate buffer for every material parameter 
(or, sometimes, a material index)
 Normal buffer
 Depth buffer
 Base color buffer

 Limits the range of materials?
 Disadvantage: not good for semi-transparencies
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Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares 
 limited Depth Of Field

 Motion Blur
 High Dynamic Range 
 Non-Photorealistic Rendering

 e.g., cell shading:
 1. contours
 2. lighting quantization

 Texture-for-geometry
 Bump-mapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF

Screen-Space techniques (in general)
(a class of multi-pass techniques)

 1st pass: 
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:
 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, we can apply image filters to the rendering.
 Many of the techniques in the previous slides are like this
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Shadow mapping

Shadow-mapping in a nutshell
(a multi-pass technique for shadows)

1st pass: 
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass: 
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast a shadow
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Shadow-mapping
concept

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER

Shadow mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional  topics
(no exam)
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Shadow Mapping:
effect of being in shadow
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diffuse
term

specular
term

ambient
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term

repeat for each light source

+ + +

negated for that light source
(with PCF: in full or in part)

Shadow Mapping:
effect of being in shadow

 Negates (zeroes) the 
light term of that (discrete) light-source

 Observe: the other light components are 
unaffected:
 Other (non shadowed) lights
 The ambient factor
 Emission factor
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Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps) 
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the 
“ambient” component of lighting, instead

 Idea: 
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point 𝐩, its AO factor is a measure of how 

much 𝐩 is exposed in the open
 𝐩 is well exposed: AO ≈ 1.0
 𝐩 is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind: 
 (1) it is an approximation 
 (2) it is a purely geometrical computation
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Two ways to compute AO:
OSAO  versus  SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture 

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

Baked AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor
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No SSAO

OFF

With SSAO

ON

130

131



3D Video Games                                
14: Rendering Techniques for games

2021-05-25

Marco Tarini                                   
Università degli Studi di Milano 24

Screen Space AO
in a nutshell

 1st pass: standard rendering
 produces: rgb image
 produces: depth image

 2nd pass: 
screen space technique
 for each pixel, look at its depth VS its neighbor depths:

 Neighbors are in front? 
difficult to reach pixel: darken ambient

 neighbors are behind? 
pixel exposed to ambient light: keep it lit

Ambient occlusion: 
effects
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repeat for each light source

+ + +

negates 
some % 
of this
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(limited)
Depth of Field

depth
in focus 
range:
sharpdepth

out of focus 
range:

blurred

(limited) Depth of Field 
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing
 RGB image (kept off screen)
 depth-buffer (as usual)

 2nd pass: 
 pixel inside of focus range?  Keep in focus
 pixel outside of focus range?  blur

 Blur, way 1 = average with neighboring pixels
kernel size ~= amount of blur

 Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation
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HDR - High Dynamic Range
(limited Dynamic Range)

HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: fill the off-screen buffer 

like a normal rendering, 
EXCEPT use lighting / materials value that are HDR
 so, RGB of final pixel values not in [0..1]
 e.g., sun emits light with  RGB [ 15.0 , 15.0 , 15.0 ]: 

 Second pass: 
 Make values >1 bleed over neighboring pixels
 i.e.: overexposed pixels lighten neighbors pixels
 Result: halo effect

>1 = “overexposed”! 
i.e., “whiter than white”
(here: 15 times brighter 

than the maximal screen brightness)
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Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:
 displacement maps
 color / rgb map

Parallax Mapping

Normal map
only
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Parallax Mapping

Normal map
+ Parallax map

Motion Blur
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Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:
 imitating a given style (imitative rendering),

such as:
 cartoons (“toon shading”)  most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, comics, etc  very common
 pastels, oil paintings, crayons …

 clarity/readability  (illustrative rendering) 
 usually not for games

Toon shading / Cel Shading
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Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam 

Not just for games

The Dragon Prince – Bardel Entertainment, 2019 
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Toon shading / Cel Shading
in a nutshell

 Simulating “toons” / hand drawn effect
 At its basics, a combination of two effects:
 addition contour lines

 lines appearing at discontinuities of:
1. depth, 
2. normals, 
3. materials

 quantized lighting:
 e.g., 2 or 3 tones: light, medium, dark

instead of continuous shades
 a simple variation of lighting equation: 

quantize its result

NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)
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