
3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models 
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

:-(

B

In which space to computue
the lighting?

world
space

A
F

G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

TNB
space

view
space

POV

object
space

77

78

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 2

In which space to compute
the lighting?
 All versors that used in any operation in the lighting equation

must be expressed in the same space
 view direction, light directions, half-way vector, normals, tangent dirs…

 Choice: which space to use?
 View space? (the space of the camera)
 World space?
 Local object space? (the space of the object currently being rendered)

 With normal maps, the most efficient solution is:
 Use the same space the normals are expressed, in the texture

For Tangent Space normal maps: the TBN space
 All other versors must be transformed into this space… per vertex!
 The normals accessed from the texture can be used right away… per pixel!
 This minimizes the amount of transformations needed

 In this lecture, we’ll get a better understanding of the difference

for anisotropic materials

3D Videogames 2020/2021
Univ. degli Studi di Milano

Rendering in games
Part II: standard rendering
algorithms for 3D games

79

80

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 3

Rendering in 3D games

 Real time
 (20 o) 30 o 60 FPS

 Hardware (GPU) based
 pipelined, stream processing

 therefore: one class of algorithms (hardwired)
 rasterization based algorithm
 recent trend: switch to ray-tracing algorithms?

 Complexity:
 Linear with # of primitives
 Linear with # of pixels

High-level view of mesh rendering

To render a mesh:
 load in GPU RAM:
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE MATERIAL ASSET

In this lecture, we’ll go lower level

81

82

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 4

Graphic card

85

BUS

CPU

ALU

(central)

RAM

Disk

Video card

…Internal bus
(of video card)

RAM
(video card)

GPU

Rendering of a mesh =
rasterization of all its triangles

x

y z

𝐯0 = (𝑥0, 𝑦0, 𝑧0)

𝐯1 = (𝑥1, 𝑦1, 𝑧1)

𝐯2 = (𝑥2, 𝑦2, 𝑧2)

85

86

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 5

Example: full API for the GPU pipeline (OpenGL) 1/2

Example: full API for the GPU pipeline (OpenGL) 2/2

87

88

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 6

GPU pipeline –
a simplified conceptual version

3D vertex
+

attributes

fragment
process

final
RGB
pixel

fragments
(“wannabe pixel”)

vertex
process

z x

v0
v1

v2

rasterizer

y

2D screen
triangle

v0
v1

v2

Rasterization based rendering:
steps (remarks 1/2)
 Vertex processor: (per vertex)

 Input: vertex data (position + initial attributes)
 Output: a final screen position,

and other (refined) attributes

 Rasterizer: (per triangle)
 Input: a triplet of processed vertex (with attributes)
 Output: many “fragment”, one for each pixel covered by the triangle,

each with interpolated attributes

 Fragment shader: (per fragment)
 Input: a fragment (with attributes)
 Output: a final rgb color (plus: an alpha value, plus: a depth value)

 Output combiner: (per fragment)
 Writes the rgb color on the screen buffer
 Overwrites, blends, or preserves the old value

It’s a SIMD architecture:
Every step does the same
processing on several inputs,
producing several output,
all in parallel,

91

92

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 7

Rasterization based rendering:
steps (remarks 2/2)

 It’s a pipelined architecture:
every step works in parallel with all others
 E.g., while fragment are processed, the next triangle is

being rasterized, and the next vertices are processed

 It’s a SIMD architecture:
Every step does the same processing on several
inputs, producing several output, all in parallel,
 E.g., several fragments are processed at the same time

(each one independently from the others)
 E.g., same for vertices

Rasterization based rendering:
what is done in each step (examples)

 Per vertex:
 projection: transform from object space to screen space

 skinning: transform from rest pose to current pose

 Per triangle: (rasterizer)
 rasterization
 interpolation all per-vertex attributes ←nota bene!

 Per fragment:
 lighting: from normal + lights + material to RGB

 texturing: i.e., textures are accessed in this stage

 alpha-kill: (almost) fully transparent fragments are removed

 Per fragment: (output combiner, after the fragment shader)
 depth-test: occluded pixels are removed

 alpha-blend: semi-transparent fragments are mixed with background

the
Vertex

Shader

the
Fragment

Shader

hard
wired

hard
wired

93

95

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 8

GPU pipeline – bottlenecks
(remarks and terminology)

 Like in any pipeline, the process goes as slow as its slowest stage
 i.e., the «bottleneck» of the pipeline determines the total speed
 Any other stage is idle for part of the time (which is always a waste)

 stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)

 stages after it are «starved» (they wait for input from previous stage)
 Bottleneck terminology: (in CG)

 If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)

 If the bottleneck is per fragment, the app is fill-limited
(«it cannot fill the screen buffer with pixel fast enough»)

 Performaces (rendering FPS) of a game only impoves
if computational load is removed from the bottleneck phase
 Example:

using all meshes at LOD 1 instead of one does not help a fill-limited app
 Example:

reducing the resolution of the screen does not help a geometry-limited app
 Using a simpler lighting model does not help a geometry-limited app

MORE COMMON
CASE, FOR GAMES

Rasterization-Based Rendering

3D
vertices

per
fragment

final
pixels

"fragments"

per
vertex

z x

v0
v1

v2

per
triangle

y

2D triangle
on screen

v0
v1

v2

PROGRAMMABLE:
a user-defined

"Vertex Shader"
(or “vertex program”)

PROGRAMMABLE:
a user-defined

"Fragment Shader"
(or “pixel program”)

HARD-WIRED in the GPU

96

97

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 9

In many game engines,
shaders are part of the “material asset”

To render a mesh:
 load (in GPU RAM):
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE MATERIAL ASSET

Programming languages
for writing shaders

 High level:
 HLSL (High Level Shader Language, Direct3D, Microsoft)
 GLSL (OpenGL Shading Language)
 CG (C for Graphics, Nvidia)
 PSSL (PlayStation, Sony)
 MSL (Metal, Apple)

 Low level:
 ARB Shader Program

(the “assembler” of GPU – now deprecated)

98

99

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 10

basics: Depth buffer

per
fragment

per
triangle

Scene
(geometry)

SCREEN BUFFER
per

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product

Depth buffer
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 which is sent to the screen

 …also produces a depth-buffer
 as a by-product!
 not set to the screen: it’s an “offline” buffer
 it’s used during the rendering to determine occlusions

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it’s covered by that something)

 see computer graphics course for more details

 many rendering algorithms exploit the depth-buffer
 for different uses
 for each pixel on the screen, we have not only its RGB value, but its depth

value (a scalar from 0 – close to the camera, to 1 – far from the camera)

a 2D array
of RGB values

of some
resolution

a 2D array
of depth values

(scalars in 0 to 1)
of the

same resolution

100

101

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 11

SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)

basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP

102

103

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 12

basics: Double Buffering
 To render a scene, all meshes are rendered succession

 Filling the screen buffer

 Double-buffering is a basic technique to prevent any
incomplete buffer to ever reach the screen
 E.g., a rendering where some of the meshes is still not rendered

 How it works:
 We have two RGB buffers: the front-buffer and the back-buffer
 The front buffer shows the last complete rendering

and is the one the screen shows
 The back buffer is filled by the renderings, but it is not shown

(it’s yet another example of “off-screen buffer”)
 Screen Swap: When the back buffer is ready, the two buffer are

swapped (instantaneously)
 Info about variants: look up what “V-sync” means in 3D games settings
 Observation: the depth-buffer is not doubled

basics: Per-pixel lighting

 Typically, lighting happens at the per fragment (per pixel) stage
 the cheapest option, compute lighting per vertex,

(and interpolate the resulting final RGB)
saves computation but impacts quality
(and disallows normal-maps and textures)

 Non uniform material parameters are
 gathered from textures with texture accesses
 or interpolated from per-vertex attributes (cheaper)

 Because lighting equations are now quite complex, this burdens
the per-pixel stage considerably!
 For this reason, games are often fill-limited

formerly known
as “Gouraud shading”

heavily optimized,
but still expensive

104

105

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 13

basics:
Render to Texture

per
vertex

per
triangle

v0
v1

v2

GEOMETRY
SCREEN
BUFFER

TEXTURES

“Render Target”

per
fragment

basics:
Render to Texture

per
vertex

per
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per
vertex

per
triangle

v0
v1

v2

GEOMETRY
SCREEN
BUFFER

“Render Target”

“Render Target”

other
accesses

per
fragment

per
fragment

106

108

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 14

Multipass rendering techniques
(general concept)

 1st pass: fill an internal 2D buffer
 i.e., an “off-screen” buffer (a buffer never shown to the user)
 it’s the output of this rendering, i.e. its “render target”
 normally, the render target is the “screen buffer”

(the buffer shown to the screen)
 this technique is aka “render to texture”

 2nd pass: fill the final screen buffer
 using the just-computed internal buffer as a 2D texture

 Note: efficient because…
 the off-screen buffer is either only write-only (1st pass)

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM.

No expensive swap of memory between CPU and GPU!

Example: metallic reflections
of dynamic scenes

per
fragment

per
triangle

Scene
(geometry)

per
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per
triangle

Scene
(geometry)

per
vertex

transform rasterize texturing,
lighting
including
reflection
over
metallic objects

2n
d

PA
SS Final

Screen-Buffer

109

110

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 15

Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering

algorithms changes accordingly.

aka Deferred lighting (actually, a variation)
aka Deferred rendering (inappropriate?)

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per
triangle

Scene
(geometry)

SCREEN BUFFER

per
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting

111

112

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 16

 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting (actually, a variation)
aka Deferred rendering (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single
full-screen

quad

per
fragment

2n
d

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth
buffer

per
fragment

per
triangle

per
vertex

1s
t P

AS
S

Deferred shading
 Advantage:

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage:
needs a separate buffer for every material parameter
(or, sometimes, a material index)
 Normal buffer
 Depth buffer
 Base color buffer

 Limits the range of materials?
 Disadvantage: not good for semi-transparencies

113

114

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 17

Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares
 limited Depth Of Field

 Motion Blur
 High Dynamic Range
 Non-Photorealistic Rendering

 e.g., cell shading:
 1. contours
 2. lighting quantization

 Texture-for-geometry
 Bump-mapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF

Screen-Space techniques (in general)
(a class of multi-pass techniques)

 1st pass:
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:
 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, we can apply image filters to the rendering.
 Many of the techniques in the previous slides are like this

115

117

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 18

Shadow mapping

Shadow-mapping in a nutshell
(a multi-pass technique for shadows)

1st pass:
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass:
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast a shadow

120

121

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 19

Shadow-mapping
concept

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER

Shadow mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional topics
(no exam)

122

123

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 20

Shadow Mapping:
effect of being in shadow

𝑛ො ȉ 𝐿෠

𝑑ୖ

𝑑ୋ

𝑑୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

l𝑎ୖ

l𝑎ୋ

l𝑎୆

⊗

𝑙𝐴ୖ

𝑙𝐴ୋ

𝑙𝐴୆

𝑛ො ȉ 𝐻෡
ா

l𝑠ୖ

l𝑠ୋ

l𝑠୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

+

material parameter

light parameter

geometry

+ +

l 𝑒ୖ
l 𝑒ୋ
l 𝑒୆

diffuse
term

specular
term

ambient
term

emission
term

repeat for each light source

+ + +

negated for that light source
(with PCF: in full or in part)

Shadow Mapping:
effect of being in shadow

 Negates (zeroes) the
light term of that (discrete) light-source

 Observe: the other light components are
unaffected:
 Other (non shadowed) lights
 The ambient factor
 Emission factor

124

125

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 21

Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

 Idea:
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point 𝐩, its AO factor is a measure of how

much 𝐩 is exposed in the open
 𝐩 is well exposed: AO ≈ 1.0
 𝐩 is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind:
 (1) it is an approximation
 (2) it is a purely geometrical computation

126

127

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 22

Two ways to compute AO:
OSAO versus SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

Baked AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor

128

129

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 23

No SSAO

OFF

With SSAO

ON

130

131

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 24

Screen Space AO
in a nutshell

 1st pass: standard rendering
 produces: rgb image
 produces: depth image

 2nd pass:
screen space technique
 for each pixel, look at its depth VS its neighbor depths:

 Neighbors are in front?
difficult to reach pixel: darken ambient

 neighbors are behind?
pixel exposed to ambient light: keep it lit

Ambient occlusion:
effects

𝑛ො ȉ 𝐿෠

𝑑ୖ

𝑑ୋ

𝑑୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

l𝑎ୖ

l𝑎ୋ

l𝑎୆

⊗

𝑙𝐴ୖ

𝑙𝐴ୋ

𝑙𝐴୆

𝑛ො ȉ 𝐻෡
ா

l𝑠ୖ

l𝑠ୋ

l𝑠୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

+

material parameter

light parameter

geometry

+ +

l 𝑒ୖ
l 𝑒ୋ
l 𝑒୆

diffuse
term

specular
term

ambient
term

emission
term

repeat for each light source

+ + +

negates
some %
of this

132

133

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 25

(limited)
Depth of Field

depth
in focus
range:
sharpdepth

out of focus
range:

blurred

(limited) Depth of Field
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing
 RGB image (kept off screen)
 depth-buffer (as usual)

 2nd pass:
 pixel inside of focus range? Keep in focus
 pixel outside of focus range? blur

 Blur, way 1 = average with neighboring pixels
kernel size ~= amount of blur

 Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

134

135

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 26

HDR - High Dynamic Range
(limited Dynamic Range)

HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: fill the off-screen buffer

like a normal rendering,
EXCEPT use lighting / materials value that are HDR
 so, RGB of final pixel values not in [0..1]
 e.g., sun emits light with RGB [15.0 , 15.0 , 15.0]:

 Second pass:
 Make values >1 bleed over neighboring pixels
 i.e.: overexposed pixels lighten neighbors pixels
 Result: halo effect

>1 = “overexposed”!
i.e., “whiter than white”
(here: 15 times brighter

than the maximal screen brightness)

136

137

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 27

Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:
 displacement maps
 color / rgb map

Parallax Mapping

Normal map
only

138

139

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 28

Parallax Mapping

Normal map
+ Parallax map

Motion Blur

140

141

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 29

Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:
 imitating a given style (imitative rendering),

such as:
 cartoons (“toon shading”) most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, comics, etc  very common
 pastels, oil paintings, crayons …

 clarity/readability (illustrative rendering)
 usually not for games

Toon shading / Cel Shading

142

143

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 30

Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam

Not just for games

The Dragon Prince – Bardel Entertainment, 2019

144

145

3D Video Games
14: Rendering Techniques for games

2021-05-25

Marco Tarini
Università degli Studi di Milano 31

Toon shading / Cel Shading
in a nutshell

 Simulating “toons” / hand drawn effect
 At its basics, a combination of two effects:
 addition contour lines

 lines appearing at discontinuities of:
1. depth,
2. normals,
3. materials

 quantized lighting:
 e.g., 2 or 3 tones: light, medium, dark

instead of continuous shades
 a simple variation of lighting equation:

quantize its result

NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)

146

147

