Marco Tarini
Universita degli Studi di Milano

3D Video Games
14: Rendering Techniques for games

Course Plan

lec. 1: Introduction @

lec. 2: Mathematics for 3D Games @00 ®®
lec. 3: Scene Graph @

lec. 4: Game 3D Physics @@ ® + @@ (

lec. 5: Game Particle Systems P

lec. 6: Game 3D Models @ ¢

lec. 7: Game Textures D@

lec. 8: Game 3D Animations @ ®®

lec. 9: Game 3D Audio @

lec. 10: Networking for 3D Games @
lec. 11: Artificial Intelligence for 3D Games ’Qf
lec. 12: Game 3D Rendering Techniques @

(

77
In which space to computue
the lighting?
12
oo T3
ﬁ:);/vievv/ rT4 \I’
space
T
/ .
45
78

2021-05-25

3D Video Games
14: Rendering Techniques for games

Marco Tarini

In which space to compute
the lighting?

e All versors that used in any operation in the lighting equation
must be expressed in the same space
e view direction, light directions, half-way vector, normals, tangent dirs...

e Choice: which space to use?

. f isotropi terial
e View space? (the space of the camera) O enotroplc matenat
e World space?

e Local object space? (the space of the object currently being rendered)

e \With normal maps, the most efficient solution is:

e Use the same space the normals are expressed, in the texture
For Tangent Space normal maps: the TBN space

e All other versors must be transformed into this space... per vertex!
e The normals accessed from the texture can be used right away... per pixel!
e This minimizes the amount of transformations needed

e [n this lecture, we'll get a better understanding of the difference

79
3D Videogames 2020/2021
Univ. degli Studi di Milano
Rendering in games
Part II: standard rendering
algorithms for 3D games

80

Universita degli Studi di Milano

2021-05-25

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Rendering in 3D games ,:ﬁ-

e Real time
e (200)30060FPS
e Hardware (GPU) based
e pipelined, stream processing
e therefore: one class of algorithms (hardwired)
e rasterization based algorithm
e recent trend: switch to ray-tracing algorithms?
e Complexity:
e Linear with # of primitives
e Linear with # of pixels

81

High-level view of mesh rendering -:F

To render a mesh:
e |load in GPU RAM:

v Geometry + Attributes
- THE MESH ASSET
Connectivity

Textures

THE MATERIAL ASSET

v
v

v Vertex + Fragment Shaders
v Global Material Parameters
v

Rendering Settings
e issue the Draw-call

In this lecture, we’ll go lower level

82

Universita degli Studi di Milano

2021-05-25

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Graphic card
Video card
GPU .RAI\/I
(video card)
(central)

cPU || RAM | | i
ALU Disk
|]

85
Rendering of a mesh =
rasterization of all its triangles
Vo = (XO,yo,Zo)
Vi = (Xl,y1,Z1)
y V4
86

Universita degli Studi di Milano

2021-05-25

3D Video Games 2021-05-25
14: Rendering Techniques for games

Example: full API for the GPU pipeline (OpenGL) 1/2

88

Marco Tarini
Universita degli Studi di Milano 5

3D Video Games
14: Rendering Techniques for games

GPU pipeline —

a simplified conceptual version

2D screen fragments
3D vertex triangle (“wannabe pixel”)
+
attributes

y
inal
Vo S Vvertex A v . fragment J/;GB
rasterizer .
process process pixel
Vo V2

z X

91

Rasterization based rendering:
steps (remarks 1/2)

Vertex processor: (per vertex)
e Input: vertex data (position + initial attributes)

e Output: a final screen position,
and other (refined) attributes

Rasterizer: (per triangle)
e Input: a triplet of processed vertex (with attributes)

each with interpolated attributes

Fragment shader: (per fragment)
e Input: a fragment (with attributes)

Output combiner: (per fragment)
e Writes the rgb color on the screen buffer
e Overwrites, blends, or preserves the old value

e Output: many “fragment”, one for each pixel covered by the triangle,

e Output: afinal rgb color (plus: an alpha value, plus: a depth value)

It's a SIMD architecture:
Every step does the same
processing on several inpu
producing several output,
all in parallel,

92

Marco Tarini
Universita degli Studi di Milano

2021-05-25

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Rasterization based rendering:
steps (remarks 2/2)

e |t's a pipelined architecture:
every step works in parallel with all others

e E.g., while fragment are processed, the next triangle is
being rasterized, and the next vertices are processed

e |t's a SIMD architecture:
Every step does the same processing on several
inputs, producing several output, all in parallel,

e E.g., several fragments are processed at the same time
(each one independently from the others)

e E.g., same for vertices

93

what is done in each step (examples)

the e Pervertex:
Vertex ° projection: transform from object space to screen space
Shader

e skin ning: transform from rest pose to current pose

e Per triangle: (rasterizer)

hard terizati
wired ® rasterization

e interpolation all per-vertex attributes «nota bene!

@ Per fragment:
the ° Iighting: from normal + lights + material to RGB
Fragment .
Shader e texturing: i.e., textures are accessed in this stage

° aIpha—kiII: (almost) fully transparent fragments are removed

e Per fragment: (output combiner, after the fragment shader)
hard e depth-test: occluded pixels are removed

wired
o alpha—blend: semi-transparent fragments are mixed with background

Rasterization based rendering: -‘.;:f_lf,fe

95

Universita degli Studi di Milano

2021-05-25

Marco Tarini
Universita degli Studi di Milano

3D Video Games
14: Rendering Techniques for games

GPU pipeline — bottlenecks

(remarks and terminology)

e Like in any pipeline, the process goes as slow as its slowest stage
e i.e., the «bottleneck» of the pipeline determines the total speed
e Any other stage is idle for part of the time (which is always a waste)

e stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)

e stages after it are «starved» (they wait for input from previous stage)
e Bottleneck terminology: (in CG)

e |If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)

e |If the bottleneck is per fragment, the app is fill-limited
(«it cannot fill the screen buffer with pixel fast enough»)
e Performaces (rendering FPS) of a game only impoves
if computational load is removed from the bottleneck phase

e Example:
using all meshes at LOD 1 instead of one does not help a fill-limited app

e Example:
reducing the resolution of the screen does not help a geometry-limited app

e Using a simpler lighting model does not help a geometry-limited app

MORE COMMON
CASE, FOR GAMES

96

Rasterization-Based Rendering

[HARD-WIRED in the GPU]

y
V1 Vo iV)
Vo per per per final
vertex triangle fragment pixels
V2
V2
z X)
3D 2D trlang/e ”fragments”
] on screen
vertices

PROGRAMMABLE: PROGRAMMABLE:
a user-defined a user-defined
"Vertex Shader" "Fragment Shader"

(or “vertex program”) (or “pixel program”)

97

2021-05-25

3D Video Games 2021-05-25
14: Rendering Techniques for games

. det
In many game engines, el
shaders are part of the “material asset”

To render a mesh:
e |oad (in GPU RAM):

v Geometry + Attributes
- THE MESH ASSET
Connectivity
Textures

THE MATERIAL ASSET

v

v

v Vertex + Fragment Shaders
v Global Material Parameters
v

Rendering Settings
® issue the Draw-call

98

. F
Programming languages ":‘LS’&
for writing shaders

e High level:
e HLSL (High Level Shader Language, Direct3D, Microsoft)
e GLSL (OpenGL Shading Language)
e CG (Cfor Graphics, Nvidia)
e PSSL (PlayStation, Sony)
e MSL (Metal, Apple)

e Low level:

e ARB Shader Program
(the “assembler” of GPU — now deprecated)

99

Marco Tarini
Universita degli Studi di Milano 9

3D Video Games 2021-05-25
14: Rendering Techniques for games

basics: Depth buffer

screen

AW

SCREEN BUFFER

seomet) :

transform rasterize texturing,
lighting, ...
+ depth test

N

-

100

Depth buffer .|
(or Z-buffer) (or depth-map) 22D array

of RGB values

. . | of some
e Any rendering producing a screen-buffer
resolution
e which is sent to the screen
e ..also produces a depth-buffer «— a 2D array

of depth values
(scalarsin O to 1)

of the
e it's used during the rendering to determine occlusions | s3me resolution

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it's covered by that something)

e asa by-product!
e not set to the screen: it’s an “offline” buffer

e see computer graphics course for more details
e many rendering algorithms exploit the depth-buffer
e for different uses

e for each pixel on the screen, we have not only its RGB value, but its depth
value (a scalar from 0 — close to the camera, to 1 — far from the camera)

101

Marco Tarini
Universita degli Studi di Milano 10

3D Video Games 2021-05-25
14: Rendering Techniques for games

basics: Double Buffering

<
WIP

g e
\r “\af\%
Scene pe
yertet

P

(geometry)

SCREEN BUFFER B

102

basics: Double Buffering

~

SCREEN BUFFER A
Scene

(geometry) Veﬁ:efx .
er '
triangte). Per
“Emen W| P

SCREEN BUFFER B

103

Marco Tarini
Universita degli Studi di Milano 11

3D Video Games 2021-05-25
14: Rendering Techniques for games

basics: Double Buffering ul:ﬁ

e Torender a scene, all meshes are rendered succession
e Filling the screen buffer

e Double-buffering is a basic technique to prevent any
incomplete buffer to ever reach the screen
e E.g., arendering where some of the meshes is still not rendered

e How it works:
e We have two RGB buffers: the front-buffer and the back-buffer

e The front buffer shows the last complete rendering
and is the one the screen shows

e The back buffer is filled by the renderings, but it is not shown
(it's yet another example of “off-screen buffer”)

e Screen Swap: When the back buffer is ready, the two buffer are
swapped (instantaneously)

e Info about variants: look up what “V-sync” means in 3D games settings
e Observation: the depth-buffer is not doubled

104
"
. . A . . 28 I}‘L
basics: Per-pixel lighting s
e Typically, lighting happens at the per fragment (per pixel) stage
e the cheapest option, compute lighting per vertex,
(and interpolate the resulting final RGB) formerly known
saves computation but impacts quality as “Gouraud shading”
(and disallows normal-maps and textures)
e Non uniform material parameters are
e gathered from textures with texture accesses heav'l.y Opt'm'z.ed’
but still expensive
e orinterpolated from per-vertex attributes (cheaper)
e Because lighting equations are now quite complex, this burdens
the per-pixel stage considerably!
e For this reason, games are often fill-limited
105

Marco Tarini
Universita degli Studi di Milano 12

3D Video Games
14: Rendering Techniques for games

basics:
Render to Texture
v Vi
GEOMETRY 1

TEXTURES access(-es)

“

“Render Target”

SCREEN
BUFFER

106
basics:
Render to Texture
“Render Target”
Vi Vi

other
TEXTURES
accesses
vo "
GEOMETRY per per
vertex . triangle
V2

fragment

SCREEN
BUFFER

“Render Target”

108

Marco Tarini
Universita degli Studi di Milano

2021-05-25

13

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Multipass rendering techniques
(general concept)

e 1%t pass: fill aninternal 2D buffer
e i.e, an “off-screen” buffer (a buffer never shown to the user)
e it’s the output of this rendering, i.e. its “render target”

e normally, the render target is the “screen buffer”
(the buffer shown to the screen)

e this technique is aka “render to texture”
e 2" pass: fill the final screen buffer

e using the just-computed internal buffer as a 2D texture
e Note: efficient because...

e the off-screen buffer is either only write-only (15 pass)
or read-only (2" pass). Never both!

e the off-screen buffer is constructed and used in GPU RAM.
No expensive swap of memory between CPU and GPU!

109

Example: metallic reflections
of dynamic scenes

a
< Scene per per per
P (scometry) vertex triangle /fragment
—
transform rasterize texturing, Env-Map
lighting 6 images)
a — Final
& scene e per per ; % Screen-Buffer
il (seometry) vertex triangle /fragment ,
o~ transform rasterize texturing, %
lighting ,
including
reflection
over _ _
metallic objects img by Tze-Yiu Ho
110

Universita degli Studi di Milano

2021-05-25

14

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Main rendering algorithms:
two classes of approaches

g Forward renderlng aka Deferred lighting (actually, a variation)
° Deferred shading / aka Deferred rendering (inappropriate?)

e Which approach to use?
e Both are employed by games

e Basilar choice! Implementation of all other rendering
algorithms changes accordingly.

111

Main rendering algorithms:
two classes of approaches

e Forward rendering

Render Target

Scene per per per
(geometry) vertex triangle /fragment

transform rasterize texturing, 4
depth test, SCREEN BUFFER

etc,
and Lighting

112

Universita degli Studi di Milano

2021-05-25

15

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Main rendering algorithms:
two classes of approaches

aka Deferred lighting (actually, a variation)

° Deferred shading / aka Deferred rendering (inappropriate?)

(multiple) Render Targets

(%)
Z Scene per per per / N
; (geometry) vertex triangle /fragment ».
- transform rasterize texturing,
depth test normals diffuse colors depth
etc, " ” buff
andL%g G-BUFFER urter
% A singl
< single per
'DC-S ful\—scrdeen » fragment
(S qua — \ '
113
Deferred shading
e Advantage:
lighting is computed only actually visible pixels
e it’s a huge saving if large depth complexity (aka overdraw)
and/or lighting complexity — both common in 3D games
e Disadvantage:
needs a separate buffer for every material parameter
(or, sometimes, a material index)
e Normal buffer
e Depth buffer
e Base color buffer
e Limits the range of materials?
e Disadvantage: not good for semi-transparencies
114

Universita degli Studi di Milano

2021-05-25

16

3D Video Games 2021-05-25
14: Rendering Techniques for games

- : P
Ad-hoc rendering techniques ;._,:]v-
popular in games: a summary

e Shadowing

_————— with PCF

e shadow mapping <
e Screen Space Ambient Occlusion <——
e Camera lens effects — SSAO
e Flares
e limited Depth Of Field <——
e Motion Blur ~—
. . ————— DoF
e High Dynamic Range <~

e Non-Photorealistic Rendering<—

e e.g, cell shading:)
e 1.contours \ o HDR

e 2.lighting quantization \\
e Texture-for-geometry

e Bump-mapping o NPR

e Parallax mapping

115

Screen-Space techniques (in general) #55
(a class of multi-pass techniques)

e 15t pass:

e Render the scene from the same point of view
as the final scene

e Produce: final color buffer, plus a z-buffer
(and/or other auxiliary buffer)

e 2" pass:

e render just one single “full screen” rectangle

e (it filling the entire screens with two triangles)

e for each produced fragment: apply 2D effects to the buffer
e Notes:

e Basically, we can apply image filters to the rendering.

e Many of the techniques in the previous slides are like this

117

Marco Tarini
Universita degli Studi di Milano 17

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Shadow mapping s

T
Shadow-mapping in a nutshell A
(a multi-pass technique for shadows)

1st pass:
e camera in light position
e render all light blockers
e produce a depth buffer only (known as the shadow map)
e (repeat for each discrete light casting a shadow)

2nd pass:
e camera in final position
e for each fragment,
access the shadow-map,
determine if that
if fragment is visible
by light (or not)
e If notvisible,
negate contribution
of that discrete light source
e Result:

e Blockers cast a shadow

121

Universita degli Studi di Milano

2021-05-25

18

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Shadow-mapping
concept

R
LIGHT %/

’G/Q EYE

SHADOW final

e
122

Shadow mapping:

issues

e Rendering shadow-map:

e Must be redone every time object move

e can be baked once and for all, for static objects only

e (jet another reason to label static objects!) N
e Shadow-map resolution: optional topics

. L. (no exam)
e it matters! aliasing effects
e remedies: PCF, multi-res shadow-map «———

_—

123

Universita degli Studi di Milano

2021-05-25

19

3D Video Games
14: Rendering Techniques for games

Shadow Mapping:
effect of being in shadow

negated for that light source
(with PCF: in full or in part)

) (%) (8)

material parameter

light parameter

geometry

124

Shadow Mapping:
effect of being in shadow

e Negates (zeroes) the
light term of that (discrete) light-source

e Observe: the other light components are
unaffected:
e Other (non shadowed) lights
e The ambient factor
e Emission factor

125

Marco Tarini
Universita degli Studi di Milano

2021-05-25

20

3D Video Games

14: Rendering Techniques for games

Screen Space AO (SSAQ)

Ak

- byt L Wy SS——
o k B O e
.- . W —

[L]

_,:!/" L
RS- F B
T e e

T

L Py

. —

i ThW
SSAO only

B L.

126

Ambient occlusion (AO)

e Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

e “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

e |dea:

the AO is a factor (between 0 and 1) for each surface point

AOQ factor multiples the ambient component for that point

Intuitively, for a point p, its AO factor is a measure of how

much p is exposed in the open
e pis well exposed: AO= 1.0

e pishidden, e.g. itis in the bottom of a crack: AO = 0.0
Exact definition - not in this course. But keep in mind:

e (1)itisan approximation

e (2)itisa purely geometrical computation

127

Marco Tarini

Universita degli Studi di Milano

2021-05-25

21

3D Video Games 2021-05-25
14: Rendering Techniques for games

p W o
Two ways to compute AO: ‘u“..,_'zﬁ-
OSAOQO versus SSAO

e Object Space Ambient Occlusion (OSAQ)

e Baked in preprocessing on each mesh

e Stored as a per-vertex attribute OR a texture

(“AO0-map”, or “light-map”)

e Pro:accurate & cheap (during rendering)

e Con: static! Doesn’t reflect current pos of the objects in the scene
e Screen Space Ambient Occlusion (SSAO)

e Screen space technique

e 1%t pass: compute depth map (maybe normal too)

e 2" pass: compute AO map from the above
(AO factor of each pixel, depends on neighboring depth values)

e Final pass: use AO per-pixel from pass 2

e Pro: dynamic! Reflect current position of objects in the scene
e Con:less accurate
C

e Can be combined!
128
: Aol
Baking AO over a mesh A
(OSAQ)
Exposed
high AO-factor
-~ w
P
Hidden:
low AO factor
(dark)
Baked AO map
129

Marco Tarini
Universita degli Studi di Milano 22

3D Video Games 2021-05-25
14: Rendering Techniques for games

No SSAO &

130

With SSAO :‘1

131

Marco Tarini
Universita degli Studi di Milano 23

3D Video Games
14: Rendering Techniques for games

Marco Tarini

Screen Space AO ,:ﬁ-

in a nutshell

e 1st pass: standard rendering
e produces: rgh image
e produces: depth image

e 2nd pass:
screen space technique

e for each pixel, look at its depth VS its neighbor depths:

e Neighbors are in front?
difficult to reach pixel: darken ambient

e neighbors are behind?
pixel exposed to ambient light: keep it lit

132

effects

(@ - L) <d6>®<LG>+ (@ -

/ material parameter

some % light parameter
of this

negates

geometry

. . -q.ll— r
Ambient occlusion: "'1..'3"_“

133

Universita degli Studi di Milano

2021-05-25

24

3D Video Games
14: Rendering Techniques for games

Marco Tarini

(limited)
Depth of Field

ﬁ\;”d_ /

B
depth
out of focus

range
blurred

134

depth
in focus
range
sharp

(limited) Depth of Field
in a nutshell

e Screen space technique:

e 1st pass: standard rendering, producing
e RGB image (kept off screen)
e depth-buffer (as usual)

e 2nd pass:
e pixel inside of focus range? Keep in focus

e pixel outside of focus range? blur

e Blur, way 1 = average with neighboring pixels
kernel size ~= amount of blur

e Blur, way 2 = compute MIP-map of RGB image,

use lower MIP-map level with bilinear interpolation

135

Universita degli Studi di Milano

2021-05-25

25

3D Video Games
14: Rendering Techniques for games

Marco Tarini

HDR - High Dynamic Range
(limited Dynamic Range)

136
HDR - High Dynamic Range
in a nutshell
Screen space technique:
First pass: fill the off-screen buffer
like a normal rendering,
EXCEPT use lighting / materials value that are HDR
e 5o, RGB of final pixel values not in [0..1]
e e.g., sunemits light with RGB [15.0, 15.0, 15.0]: \
>1 = “overexposed”!
i.e., “whiter than white”
(here: 15 times brighter
than the maximal screen brightness)
Second pass:
e Make values >1 bleed over neighboring pixels
e i.e.: overexposed pixels lighten neighbors pixels
e Result: halo effect
137

Universita degli Studi di Milano

2021-05-25

26

3D Video Games
14: Rendering Techniques for games

Parallax mapping:
in a nutshell

e Texture-for-geometry technique

e Texture used:
e displacement maps
e color/rgb map

138

Parallax Mapping

Normal map
only

Marco Tarini
Universita degli Studi di Milano

2021-05-25

27

3D Video Games 2021-05-25
14: Rendering Techniques for games

Parallax Mapping

Normal map
+ Parallax map

141

Marco Tarini
Universita degli Studi di Milano 28

3D Video Games
14: Rendering Techniques for games

Non-PhotoRealistic Rendering ﬁ,
(NPR)

e Any rendering technique not aimed at realism

e Instead, the objective can be:
e imitating a given style (imitative rendering),
such as:
cartoons (“toon shading”) € most popular!
pen-and-ink drawings
pencil sketches
pixel art € popular in nostalgic retro games (niche)
manga, comics, etc €« very common
e pastels, oil paintings, crayons ...
e clarity/readability (illustrative rendering)
e usually not for games

142

Toon shading / Cel Shading ﬁ,

143

Marco Tarini
Universita degli Studi di Milano

2021-05-25

29

3D Video Games
14: Rendering Techniques for games

Toon shading / Cel Shading

(tweaked) Team Fortress Il — Steam

144

Not just for games

145

Marco Tarini
Universita degli Studi di Milano

2021-05-25

30

Marco Tarini
Universita degli Studi di Milano

3D Video Games
14: Rendering Techniques for games

Toon shading / Cel Shading :.':ﬁ-
in a nutshell

e Simulating “toons” / hand drawn effect

e At its basics, a combination of two effects:
e addition contour lines

e lines appearing at discontinuities of:
1. depth,
2. normals,
3. materials

e quantized lighting:
e e.g, 2 or 3 tones: light, medium, dark
instead of continuous shades

e asimple variation of lighting equation:
guantize its result

146

NPR rendering: :._111
e.g.: simulated pixel art

o

N

& &

11 'R

img by Howard Day (2015)

147

2021-05-25

31

