3D Video Games
05: Game Physics - Dynamics - 1

3D video games

3D Game Physics

l\/larco Tarini

% REMOTE
TEACHING'%

00 00
Game Particle Systems ¢

Game 3D Models @4

Game Textures @4

Game 3D Animations @@ ®

Game 3D Audio @

lec. 10: Networking for 3D Games @

lec. 11: Artificial Intelligence for 3D Games @

Course Plan

lec. 1: Introduction @
lec. 2:

lec. 3:

lec. 4:

lec. 5:

lec. 6:

lec. 7:

lec. 8:

lec. 9:

Mathematics for 3D Games @@ ®®®(
Scene Graph D@
Game 3D Physics

lec. 12: Game 3D Rendering Techniques @

Marco Tarini
Universita degli studi di Milano

2022-04-04

3D Video Games
05: Game Physics - Dynamics - 1

Animation in games

Non procedural

e Assets!

e Fully controlled by
artist/designer
(dramatic effects!)

e Realism: depends on
artist’s skill

e Does not adapt to
context

e Repetition artefacts

but, a note on terminology: u

in some contexts, procedural means
“produced by a simple procedure”
as opposed to “physically simulated’)

Procedural

e Physics engine

e Less control

e Physics-driven
realism

e Auto adaptation
to context

e Naturally repretition free

e 3D, or 2D
e “soft” real-time
e efficiency

e plausibility

e robustness

Physics simulation in videogames ﬁ,

e 1frame =33 msec (at 30 FpS)
e physics = 5% - 30% max of computation time

e but not necessarily accuracy

e should almost never “explode”

e it's tolerable to have inconsistency in a few frames,
as long as it recovers in subsequent ones

Marco Tarini
Universita degli studi di Milano

2022-04-04

3D Video Games
05: Game Physics - Dynamics - 1

Physics in games:
cosmetics or gameplay?

e Just a graphic accessory?
(for realism!)
° eg.:
e particle effects (w/o feedback)
e secondary animations
e Ragdolling
e Or a gameplay component?
e e.g. physics based puzzles

e Popular approach in 2D
(since always!)

Physics in games:
cosmetics or gameplay?

e Just a graphic accessory?
(for realism!)
° eg.:
e particle effects (w/o feedback)
e secondary animations
e Ragdolling
e Or a gameplay component?
e e.g. physics based puzzles

e Popular approach in 2D
(since always!)

Marco Tarini
Universita degli studi di Milano

2022-04-04

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1

Physics in games:
cosmetics or gameplay?

e Just a graphic accessory?
(for realism!)
° eg.:
e particle effects (w/o feedback)
e secondary animations
e Ragdolling
e Or a gameplay component?
e e.g. physics based puzzles

e Risingtrendin 3D

Physics engine:
intro

e Game engine module

e executed in real time at game run-time
e A high-demanding computation

e on avery limited time budget!
e ...but highly parallelizable

e potentially, highly parallel
==> good fit for hardware support

(just like the Rendering Bngine)

10

Marco Tarini
Universita degli studi di Milano 4

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

2022-04-04
n N
Hardware for i
Physics engine
o To exploit a strong parallelism,
Iy
you need a strongly parallel hardware!
3. e For a brief moment ~2006: PPU
) &
4 e “Physics Processing Unit”
= e HW unit specialized for physics
=
S =]
> e After that: GP-GPU
L e “General Purpose Graphics Processing Unit”
i = Use of the graphics card for generic tasks
-~ (not related with 3D computer graphics)
e or, Cuda (nVidia), OpenCL (openSource)
11
w
Main Software (libraries, SDK) Ll
MV(QK mostly CPU
(Microsoft)
'“ CPU+GPU
Physx (CUDA) NVidia
&
= open source, free,
A g AN HW accelerated (OpenCL) + CPU
A 441 A 88 AN
MM‘ open source, free
OPEN DyNAMICS ENGINE™
—F
4 Box2D 2D, open source, free
12
5

Universita degli studi di Milano

3D Video Games
05: Game Physics - Dynamics - 1

Brief history W
2 Trinity B Microsoft
3 College
Dublin \i/
o0

N
ph4
hav{eK - source
by |
etc
Lots of AAA (in Maya
3D Games as a plugin,...) Lots more of AAA
3D Games
13
Brief history oo
ETH
unity
Novo@ @
e
a Phys it e
m by NVIDIA
B>
eAMebryo
< 2
NVIDIA.
14

Marco Tarini
Universita degli studi di Milano

2022-04-04

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1
Fields of study N
e Dynamics
e The motion, as a result of forces
e “Subject to gravity, how will this pendulum swing?”
e Statics
e Equilibrium states, energy minimization states
e “In which state(s) can this pendulum be still?”
e Kinematics
e The motion itself, irrespective of why it's moving
e “If the angular speed of the pendulum is currently X,
how fast is the tip moving?” (or vice versa)
15
5,
The 2 tasks of the Physics engine %53
1. Dynamics (Newtonian) 2. Collision handling
for objects such as: e Collision detection
e Particles e Collision response
e Rigid bodies
e Articulated bodies
e E.g. “ragdolling”
e Soft bodies
e Ropes (specific solutions)
e Cloth (specific solutions)
e Hair (specific solutions)
e Free-form deformation
bodies (general)
e Fluids
e Expensive!
16
Marco Tarini
Universita degli studi di Milano 7

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Newtonian
Dynamics

e The one with:

e Masses

e and momentum

e forces acceleration...

e position and its derivative: velocity

e direction and angular velocity
e and angular momentum

17
. E L
Reminder: Yoot
Spatial placement of a (rigid) object
2D Physics ' 3D Physics
e Position: e Position:
(xy) (x,y,2)
e Orientation: e Orientation:
(a) —angle (scalar) guaternion or
axis,angle or
axis * angle or
3x3 matrix or
Euler angles
18

Marco Tarini
Universita degli studi di Milano

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Current
object

location

Position p

p=(xy2)

Newtonian dynamics: summary

19

Current
object

Rate of change
of €

location

(d/dt)

Position p Velocity v
p=(xy2) v=p

(7] = “speed”)
Orientation Angular velocity @

(e.g. quaternion)

€ “with mass”

(momentum)

Momentum
v-m

Angular momentum
@1

I = moment of inertia

(for axis)
(“rotational inertia”)

——

< ~ state (is kept! inertial)

~___ (changes, but only continuously)

—

Newtonian dynamics: summary

What changes the
rate of change

(d?/dt?)

S A
Acceleration

- 5 5
a=v=p

Angular acc. d

(no memory)

€ “with mass”

(“mechanic

momentum”)
— “chan ge the stateﬁ\\‘

~_

e

N e e

27

Marco Tarini
Universita degli studi di Milano

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Distribution of mass

Per-object constant: mass
& its distribution (for non point-shaped ones)

A few quantities associated to each object
e constants: they don’t (usually) change
e they are input of the physics dynamic simulation

e Mass: “IJ
e resistance to change of velocity —_4A

e Moment of Inertia: S

e resistance to change of angular velocity

e Barycenter:

e the center of mass m‘i—‘

Mass: notes

e resistance to change of velocity
e jnertial mass
e also, incidentally:
ability to attract every other object
e gravitational mass
e happens to be the same
e it’s what you measure with a scale
e Unity of measure:
kg, g...

29

Universita degli studi di Milano

2022-04-04

10

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1

_l‘— =
Moment of inertia: notes 1/2)

e Resistance to change of angular velocity

L

high

3 _.I.'
2

low

e (an object rotates around its barycenter)

30

h_" _
Moment of inertia: notes 2/2 R

e Scalar moment of inertia
e Resistance to change of angular velocity
e Depends on the mass, and on its distribution
e the farthest one sub-mass from the axis, the > the resistance
e In 3D:it’s different for each axis of rotation
e [t can be computed for any axis, thanks to...
e In 3D: moment of inertia as a 3x3 Matrix
e a matrix A used to extract that scalar, for any given axis
e given an axis a (a = unit vector), the moment of inertia is
a'Aa
e matrix A can be computed, once and for all, for a rigid object
e how: that’s beyond this course

e in practice: use given formulas for common shapes
e or sum the contributions for each sub-mass

31

Marco Tarini
Universita degli studi di Milano 11

3D Video Games
05: Game Physics - Dynamics - 1

_l‘__,r
. SR
Barycenter: notes sy
e Aka the center of mass
e a position
e In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
e literally “weighted”: with their masses
e Does not necessarily coincide with
the origin of the local frame of that object
e butitcan
32
A _
.. . A
State of a rigid object e
in a physical simulation
Point position
current
Rotation orientation updated
by
Vector velocity physics
current rates of change (dynamics)
Vector angular_ velocity
Scalar mass
Matrix moment of inertia
) setup at initialization,
Point barycenter constants (rarely) changed
Scalar drag e.g. by scripts
\ frictions;
see later
Note: acceleration/forces/torques are
not part of the state
33

Marco Tarini
Universita degli studi di Milano

2022-04-04

12

3D Video Games

05: Game Physics - Dynamics - 1

In Q unity

Point position
part of Transform component
Rotation orientation

Vector velocity
. the RigidBody component
Vector angular_ velocity

Scalar mass

Adding a “RigidBody” component

to a Game Object is to say:

“please let the Phys. engine take care
of this object”

Matrix moment of inertia
Point barycenter
Scalar drag

bool isKinematic

34

In Q unity (using Unity terminology) -'L,_';, \

note: they are the components
/ of the global transformation!

part of Transform component

Vector3 position

Quaternion rotation
____ note: speed = velocity.magnitude
Vector3 wvelocity

the RigidBody component

Vector3 angular_velocity<+\\\\\\\

float mass ——==—__ persecond
(not per frame!)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation [. . .

- ——— moment of inertia matrix
Vector3 centerOfMass *\\\\\\\\\\\ the Vector3 = a diagonal matrix D

by rotating it R"DR-> the final matrix
float drag T
—

~ the barycenter (in local space)

bool isKinematic ¢‘5“\‘“‘\“““

—iftrue: disable dynamics
(but keeps e.g. collisions)

35

Marco Tarini

Universita degli studi di Milano

2022-04-04

13

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1

n N
State of a particle (point sized obj) iR

in a physical simulation

Point position

/ not used for point sized objects!

Vector velocity

Scalar mass

Poj ! One possibility in a game phys engine
is to only simulate point-particles.
Scalar drag Simpler: no rotation needed!

We will see later how to still get rigid
bodies back.

For now, we focus on this simpler case.

36

H" _
Newtonian Dynamics (for particles) f;;.;}

(f(t) = function(p(¢t),...)

a(t) =)
m
v(t) = vy + f a(t’ -dt’

t'=0
t

p(®) = po + f 3¢ - de’
_

t'=0

37

Marco Tarini
Universita degli studi di Milano 14

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

2022-04-04
Newtonian Dynamics: o
equivalent formulation
a
f(t) = function(p(t),...)
@) =p®)
t
< ao = po =12
m
p(0) =V,
g pP(0) = po
38
Dynamics (Newtonian) R
/’ forces
positions acceler.
velocity
39
15

Universita degli studi di Milano

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

An obvious remark, but

Simulation # Wall
time time

They are just artificially made to flow in sync... usually

e But (e.g.) not when:
game is paused (t is constant), replays, fast forwards, reverses...

40

An obvious remark, but

Simulation # Wall
time time

Occasionally, the difference is spectacularly exploited by clever gameplay designs!

Braid The longing
(Jonathan Blow, 2008) (Studio Seufz, 2020)

41

Universita degli studi di Milano

2022-04-04

16

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1

Computing physics evolution ol

e Analytical solutions: e Numerical solutions:

state = function(t) 1. state .o € init

2. state,, q

Given force functions (and acc), find

the functions (pos, vel,...) in the é
specified relations: do 1 step(Statet)
fae)= funz(p(ic),...) 3. goto 2

a(te)=f(te)/m

V(to) =V, +j£i(t)-dt

plic) = py+ [¥(0)-dt

42
]
Analytical solutions R
p(t) = some function of ¢
derivative w.r.t. time
v(t) = p(t)
a(t) = p(t) = forces(p(t),p(t), ¢, ...)/m
p(0) = 70
p(0) =po
44

Marco Tarini
Universita degli studi di Milano 17

3D Video Games
05: Game Physics - Dynamics - 1

Analytical solutions

such that...

p(0)

Vo >
p(0) = po
A system of ODE

(Ordinary Differential Equation)

p(t) = forces(p(t),...)/m

_l‘— =)
™ u
‘H-,‘l

Find the positions as a functions p(t) of time t

45
Simple example: ol shooting” '.;3]1
ana |ytlca| SOl UtIOn in 2D, ignoring friction...
pe 0 in this specific case,
y =m- acc is a constant
-9.8 (does not depend on pos)
- vx
Vy
0
Po = 0
46

Marco Tarini
Universita degli studi di Milano

2022-04-04

18

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Simple example: e
analytical solution

Fte) = fun(p(te),...)
a(te)=f(t)/m

Solving...

J;(tc):m'(0 j
-9.8

tt) = Fac)/m =(_g_8j

o[Y (0 g = v,
V=, +£(—9.8j' v, -9.81

V() =7, + fa(z).dt

plic) = po+ [3(0)-dt

t tC"t dr=| ° (I dt Vele
p(C)_p0+!;v() - O +,(‘)- vy_9.8-t B vy‘tc—9.8/2'tcz

47

analytical solution

Final result:

f(tc):m‘(0 j
-9.8

_ 0 P p(t)
t = P RS
a(C) (_98j N

5 (v, J
Vtc = /7 \
v, —9.8-1. & N x

; v, -t
pltc) = vt —9.8/2:1.

Simple example: e

48

Universita degli studi di Milano

2022-04-04

19

3D Video Games

05: Game Physics - Dynamics - 1

Numerical integration "-L;L,L'-
f (tc) = function(p(tc),...)
a(te) = f(tc)/m
tc
(te) = Uy + J a(t) - dt
0
tc
plee) = po + | 5(0) - de
0
It’s our way to solve the ODE
49
A _
Numerical integration ol
e A numerical integrator computes the integral as
summed area of small rectangles
e For a physics engine, this means just updating velocity and
positions at each physics step
e A crucial parameter is the width of the rectangles i.e.
dt = the duration of the physics step (in virtual time)
e |If physics system perform N steps per second:
dt=1.0sec/N
e Nis not necessarily same rendering frame rate
e.g.: rendering 30 FPS but physics: 60 steps per seconds
e (dtis not necessarily constant during the simulation
(but in most system, it is)
50

Marco Tarini

Universita degli studi di Milano

2022-04-04

20

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Rendering Frames-per-Seconds (FPS) Gl
vs Physics Steps-per-Seconds

rendering rendering rendering rendering rendering rendering

- 0 O

& L2 L L L L0 L L

physics physics physics physics physics physics physics physics
step step step step step step step step

51

Rendering Frames-per-Seconds (FPS) u,
vs Physics Steps-per-Seconds

rendering rendering rendering rendering rendering rendering rendering rendering

O O A

52

Universita degli studi di Milano

2022-04-04

21

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Variable timesteps?

rendering rendering rendering rendering rendering

= 0 L

s - NS,
~.. - <.
L C Ry Seamee”

O LOL L& L OO

physics physics physics physics phiysics physics physics
step step step step step step step

e

rendering

[Pau

S,

physics
step

53

Numerical methods: features

How efficient / expensive
e must be at least soft real-time
e (if from time to time computation delayed to next frame, ok)
How accurate
e must be at least plausible
e (if stays plausible, differences from reality are acceptable)
How robust
e rare completely wrong results
e (and never crash)
e How generic

e Which phenomena / constraints / object types is it able to
recreate?

e requirements depend on the context (ex: gameplay)

G

54

Universita degli studi di Milano

2022-04-04

22

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Euler integration methods "

f = fun(p,...)

i=f/m
B=5,+ [a-dt

J

p=p0+Jv-dt

Assumption: a

For each step:

(1) Evaluate the force

on each particle

as a function of positions
(of this and other particles)
and maybe other things too

(2) acceleration

of each particle given by:
total force on it divided by its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state) , (temp variables)

55
Euler integration methods ey
init P e e
state § « ...
[a—
f fun(p, ...)
one = 7
cen a<—f/mq t=t+dt
pep+tv-dt
Vev+a-dt
\ J
56

Universita degli studi di Milano

2022-04-04

23

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

2022-04-04
a
Forward Euler pseudo code Ll
Vee3 position = Equwalejt to...
Vec3 velocity = fi = function(py,...)
void initState () { a; = f/zn .
position = Vig1 =V +a;-dt
} velocity = .. Dis1=p; + 131. - dt
void physicStep(float dt)
{
Vec3 acceleration = compute force(position) / mass;
position += velocity * dt;
velocity += acceleration * dt;
}
void main () {
initState() ;
while (1) do physicStep(1.0 / FPS);
}
57
n =
1 . Same phenomena iu ,:LH_
Slmple example of previous example "'H'-gl‘l :
numerical solution
. 0 constant
y f =m: (in this specific case not
-1 dependent from pos)
here, for instance,
_ (v (2
Vo = = dt = 1 sec
v 4
y
X
0
Py = 0
58
24

Universita degli studi di Milano

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1
Simple example: L
numerical solution
Time: 0 1 2 3 4 5 6 7
vel: (2,3) (2,2) (2,2) (2,0) (2,-1) (2,-2) (2,-3) (2,-4)
pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0
Sl Ltk R)
step step step step step step step step
Yy
> m. 0
fem (2 , 3 4
a=f/m 1 @ ’g @ @ 6
v=7v4+d-dt ’@ @ 7
p=p+v-dt @H X
59
Physics evolution computation oy
e Analytical solutions: e Numerical solutions:
(5;) = function_pos(time)
(Eﬁ) = function_vel(time) y
T I ry
/// A 0'@ @ 7
S ® &
60
Marco Tarini
Universita degli studi di Milano 25

3D Video Games 2022-04-04
05: Game Physics - Dynamics - 1

P
Physics evolution computation e
e Analytical solutions: e Numerical solutions:
e Super efficient! e Expensive (iterative)
e Close form solution e but interactive
e Accurate e Integration errors
e Only simple systems e Flexible
e formulas found e Generic
case by case
(often not existing!)
e NO e YES
(but, for instance, useful to
allow the Al to make
predictions)
61
-y
. A
Integration errors s
e A numerical integrator only approximates
the real value of the integrals
e The discrepancy (simulation errors) accumulate
with virtual time
during all the simulation
e How much error is accumulated?
e |t depends on dt !
e Small dt = more steps needed (for same virtual time)
= more computationally expensive,
but smaller errors, i.e. more accurate simulation
62

Marco Tarini
Universita degli studi di Milano 26

3D Video Games

05: Game Physics - Dynamics - 1

Marco Tarini

Order of convergence s

e How much does the total error decrease
as dt decreases?
e That's called the Order of the simulation
e 1storder: the total error can be as large as O(dt')

e “if the number of physics steps doubles
(physical computation effort doubles)
dt becomes halves and errors can be expected to halve”

e The error introduced by each single step is O(dt?),
e The Euler seen is 15t order
e This is not too good, we want better

e Note: The error is usually not that bad as linear with dt,
but they can be

63

h_" _
The integration steps dt of R
any numerical methods (summary)

dt : delta of virtual time from last step _
number of physics
e the “temporal resolution” of the simulation! steps per sec, or
. . «physics FPS»
e if large: more efficiency |
e fewer steps to simulate same amount of virtual time /f
e if small: more accuracy /
e especially with strong forces and/or high velocities
e Common values: 1sec/60.. 1sec/30

e i.e.astepsimulates around 16 ... 32 msec. of virtual time

e note: it’s not necessarily the same refresh rate of rendering
(FPS of rendering # FPS of physics. Rendering can be less!)

e note: di dtis not necessarily the same in all physics steps
(need more accuracy now? Decrease dt

64

Universita degli studi di Milano

2022-04-04

27

