
3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 1

3D video games

3D Game Physics
Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

2

3

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 2

Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on
artist’s skill

 Does not adapt to
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a note on terminology:
in some contexts, procedural means
“produced by a simple procedure”
as opposed to “physically simulated”

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 but not necessarily accuracy

 robustness
 should almost never “explode”
 it’s tolerable to have inconsistency in a few frames,

as long as it recovers in subsequent ones

4

6

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 3

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

7

8

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 4

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D

Physics engine:
intro

 Game engine module
 executed in real time at game run-time

 A high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 potentially, highly parallel

==> good fit for hardware support
(just like the Rendering Engine)

9

10

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 5

Hardware for
Physics engine

 For a brief moment ~2006: PPU
 “Physics Processing Unit”
 HW unit specialized for physics

 After that: GP-GPU
 “General Purpose Graphics Processing Unit”

= Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 or, Cuda (nVidia), OpenCL (openSource)

To exploit a strong parallelism,
you need a strongly parallel hardware!

Main Software (libraries, SDK)

open source, free,
HW accelerated (OpenCL) + CPU

open source, free

mostly CPU
(Microsoft)

CPU+GPU
(CUDA) NVidia

2D, open source, free

11

12

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 6

Brief history

Lots of AAA
3D Games

by

VPhysics

etc
(in Maya
as a plugin,…) Lots more of AAA

3D Games

Brief history

…

13

14

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 7

Fields of study

 Dynamics
 The motion, as a result of forces
 “Subject to gravity, how will this pendulum swing?”

 Statics
 Equilibrium states, energy minimization states
 “In which state(s) can this pendulum be still?”

 Kinematics
 The motion itself, irrespective of why it’s moving
 “If the angular speed of the pendulum is currently X,

how fast is the tip moving?” (or vice versa)

The 2 tasks of the Physics engine

1. Dynamics (Newtonian)
for objects such as:
 Particles
 Rigid bodies
 Articulated bodies

 E.g. “ragdolling”

 Soft bodies
 Ropes (specific solutions)
 Cloth (specific solutions)
 Hair (specific solutions)
 Free-form deformation

bodies (general)

 Fluids
 Expensive!

2. Collision handling
 Collision detection
 Collision response

15

16

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 8

Newtonian
Dynamics

 The one with:
 Masses
 position and its derivative: velocity
 and momentum

 direction and angular velocity
 and angular momentum

 forces acceleration…

Reminder:
Spatial placement of a (rigid) object
2D Physics

 Position:
(x,y)

 Orientation:
(α) – angle (scalar)

3D Physics

 Position:
(x,y,z)

 Orientation:
quaternion or

axis,angle or

axis * angle or

3x3 matrix or

Euler angles

17

18

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 9

Newtonian dynamics: summary

Current
object
location

Position 𝑝

𝑝 = (x,y,z)

Newtonian dynamics: summary

Current
object
location

Rate of change
of 

(d / dt)

 “with mass”

(momentum)

What changes the
rate of change

(d2 / dt2)

 “with mass”

Position 𝑝

𝑝 = (x,y,z)

Velocity 𝑣

𝑣 = 𝑝̇

(|𝑣| = “speed”)

Momentum

𝑣 ȉ 𝑚

Acceleration

𝑎⃗ = 𝑣̇ = 𝑝̈

Force 𝑓

𝑓 = 𝑎⃗ ȉ 𝑚

Orientation

(e.g. quaternion)

Angular velocity 𝜔 Angular momentum

𝜔 ȉ 𝐼

𝐼 = moment of inertia
(for axis)
(“rotational inertia”)

Angular acc. α Torque τ

τ = 𝑎⃗ ȉ 𝐼

(“mechanic
momentum”)

change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)

19

27

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 10

Per-object constant: mass
& its distribution (for non point-shaped ones)

A few quantities associated to each object
 constants: they don’t (usually) change
 they are input of the physics dynamic simulation

 Mass:
 resistance to change of velocity

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of massDi

st
rib

ut
io

n
of

 m
as

s

Mass: notes

 resistance to change of velocity
 inertial mass

 also, incidentally:
ability to attract every other object
 gravitational mass
 happens to be the same

 it’s what you measure with a scale
 Unity of measure:

kg, g…

28

29

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 11

Moment of inertia: notes 1/2

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low

Moment of inertia: notes 2/2

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the mass, and on its distribution

 the farthest one sub-mass from the axis, the > the resistance
 In 3D: it’s different for each axis of rotation

 It can be computed for any axis, thanks to…
 In 3D: moment of inertia as a 3x3 Matrix
 a matrix A used to extract that scalar, for any given axis
 given an axis a (a = unit vector), the moment of inertia is

aT A a
 matrix A can be computed, once and for all, for a rigid object

 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or sum the contributions for each sub-mass

30

31

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 12

Barycenter: notes

 Aka the center of mass
 a position

 In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
 literally “weighted”: with their masses

 Does not necessarily coincide with
the origin of the local frame of that object
 but it can

State of a rigid object
in a physical simulation

current

current rates of change

constants

updated
by
physics
(dynamics)

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

setup at initialization,
(rarely) changed
e.g. by scripts

Note: acceleration/forces/torques are
not part of the state

frictions;
see later

32

33

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 13

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

Adding a “RigidBody” component
to a Game Object is to say:
“please let the Phys. engine take care
of this object”

bool isKinematic

In (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Vector3 angular_velocity

float mass

Vector3 centerOfMass

float drag

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter (in local space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame!)

bool isKinematic
if true: disable dynamics
(but keeps e.g. collisions)

34

35

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 14

State of a particle (point sized obj)
in a physical simulation

not used for point sized objects!

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

One possibility in a game phys engine
is to only simulate point-particles.

Simpler: no rotation needed!

We will see later how to still get rigid
bodies back.

For now, we focus on this simpler case.

Newtonian Dynamics (for particles)

𝑓(𝑡) = function(𝐩 𝑡 , . . .)

𝑎⃗ 𝑡 =
𝑓 𝑡

𝑚

𝑣⃗ 𝑡 = 𝑣⃗଴ + න 𝑎⃗ 𝑡ᇱ ⋅ 𝑑𝑡ᇱ

௧

௧ᇲୀ଴

𝐩(𝑡) = 𝐩଴ + න 𝑣⃗ 𝑡ᇱ ⋅ 𝑑𝑡′

௧

௧ᇲୀ଴

describes the forces
given all the particle positions (and more)

36

37

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 15

Newtonian Dynamics:
equivalent formulation

𝑓(𝑡) = function(𝐩 𝑡 , . . .)

𝑣⃗ 𝑡 = 𝐩̇ 𝑡

𝑎⃗ 𝑡 = 𝐩̈ 𝑡 =
𝑓 𝑡

𝑚

𝐩̇(0) = v଴

𝐩(0) = p଴

Dynamics (Newtonian)

forces

acceler.

velocity

positions

38

39

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 16

An obvious remark, but

They are just artificially made to flow in sync… usually
 But (e.g.) not when:

game is paused (𝑡 is constant), replays, fast forwards, reverses…

Simulation
time ≠ Wall

time

the 𝑡 in
all the slides

An obvious remark, but

Occasionally, the difference is spectacularly exploited by clever gameplay designs!

PoP – the sands of times serie
(Ubisoft, 2003-now)

Braid
(Jonathan Blow, 2008)

The longing
(Studio Seufz, 2020)

Simulation
time ≠ Wall

time

the 𝑡 in
all the slides

40

41

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 17

Computing physics evolution

 Analytical solutions:

state = function(t)

Given force functions (and acc), find
the functions (pos, vel,…) in the
specified relations:

 Numerical solutions:

1. state(t = 0) init
2. state(t + 1)

do_1_step(statet)

3. goto 2













C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfunztf

0

0

0

0

)()(

)()(

/)()(

),...)(()(









Analytical solutions

𝐩 𝑡 = some function of t

𝑣⃗ 𝑡 = 𝐩̇ 𝑡

𝑎⃗ 𝑡 = 𝐩̈ 𝑡 = 𝑓𝑜𝑟𝑐𝑒𝑠 𝐩 𝑡 , 𝐩̇ 𝑡 , 𝑡, … /𝑚

derivative w.r.t. time

𝐩̇(0) = v଴

𝐩(0) = p଴

42

44

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 18

Analytical solutions

଴

଴

Find the positions as a functions 𝐩 𝑡 of time 𝑡
such that…

sometimes,
a function of
other things too
(e.g. velocity,
time…).
Harder to solve!

the initial conditions
(we want to find their evolution!)

a given function

A system of ODE
(Ordinary Differential Equation)

Simple example:
analytical solution











y

x

v

v
v0













0

0
0p












8.9

0
mf



x

y
in this specific case,
acc is a constant
(does not depend on pos)

«ballistic shooting»
of a mass,
in 2D, ignoring friction...

45

46

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 19

Simple example:
analytical solution

Solving…



























































































2

00

0

0

2/8.98.90

0
)()(

8.98.9

0
)(

8.9

0
/)()(

8.9

0
)(

CCy

Cx
t

y

x
t

C

Cy

x
t

y

x
C

CC

C

ttv

tv
dt

tv

v
dttvptp

tv

v
dt

v

v
tv

mtfta

mtf

CC

C





















C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfuntf

0

0

0

0

)()(

)()(

/)()(

),...)(()(









Simple example:
analytical solution

Final result:


















































22/8.9
)(

8.9
)(

8.9

0
)(

8.9

0
)(

CCy

Cx
C

Cy

x
C

C

C

ttv

tv
tp

tv

v
tv

ta

mtf







x

y

)(Ctp

47

48

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 20

Numerical integration

𝑓(𝑡஼) = function(𝑝(𝑡஼), . . .)

𝑎⃗(𝑡஼) = 𝑓(𝑡஼)/𝑚

𝑣⃗(𝑡஼) = 𝑣⃗଴ + න 𝑎⃗(𝑡) ⋅ 𝑑𝑡

௧಴

଴

𝑝(𝑡஼) = 𝑝଴ + න 𝑣⃗(𝑡) ⋅ 𝑑𝑡

௧಴

଴

It’s our way to solve the ODE

Numerical integration

 A numerical integrator computes the integral as
summed area of small rectangles
 For a physics engine, this means just updating velocity and

positions at each physics step

 A crucial parameter is the width of the rectangles i.e.
dt = the duration of the physics step (in virtual time)
 If physics system perform N steps per second:

dt = 1.0 sec / N
 N is not necessarily same rendering frame rate

e.g.: rendering 30 FPS but physics: 60 steps per seconds
 dt is not necessarily constant during the simulation

(but in most system, it is)

49

50

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 21

Rendering Frames-per-Seconds (FPS)
vs Physics Steps-per-Seconds

wall time

rendering rendering rendering rendering renderingrendering

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

𝑑𝑡

Rendering Frames-per-Seconds (FPS)
vs Physics Steps-per-Seconds

wall time

rendering rendering rendering rendering renderingrendering

physics
step

physics
step

physics
step

physics
step

physics
step

𝑑𝑡

renderingrendering

physics
step

51

52

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 22

Variable timesteps?

wall time

rendering rendering rendering rendering renderingrendering

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

𝑑𝑡′′

physics
step

𝑑𝑡′

physics
step

Numerical methods: features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate
 must be at least plausible

 (if stays plausible, differences from reality are acceptable)
 How robust
 rare completely wrong results

 (and never crash)
 How generic
 Which phenomena / constraints / object types is it able to

recreate?
 requirements depend on the context (ex: gameplay)

53

54

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 23

Euler integration methods

(1) Evaluate the force
on each particle
as a function of positions
(of this and other particles)
and maybe other things too

(2) acceleration
of each particle given by:
total force on it divided by its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state) , (temp variables)

For each step:

଴

଴

Assumption: a

Euler integration methods

init
state

one
step dttt a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

𝐩 ← ⋯

v ← ⋯

55

56

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 24

Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = compute_force(position) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

Equivalent to…
𝑓௜ = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . .)

𝑎⃗௜ = 𝑓/𝑚
𝑣⃗௜ାଵ = 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ = 𝑝௜ + 𝑣⃗௜ ⋅ 𝑑𝑡

Simple example:
numerical solution




















4

2
0

y

x

v

v
v












0

0
0p












1

0
mf



x

y
constant
(in this specific case not
dependent from pos)

Same phenomena
of previous example

𝑑𝑡 = 1 sec

here, for instance,

57

58

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 25

Simple example:
numerical solution

init

Time: 0 1 2 3 4 5 6 7 …

vel: (2,3) (2,2) (2,1) (2,0) (2,-1) (2,-2) (2,-3) (2,-4) …

pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0) …

x

y

0

1

2
3 4

5

6

7

step step step step step step step step

𝑓 = 𝑚 ⋅
0

−1

𝑎⃗ = 𝑓/𝑚

𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡

𝑝 = 𝑝 + 𝑣⃗ ⋅ 𝑑𝑡

Physics evolution computation

 Analytical solutions:  Numerical solutions:

x

y

0

1

2
3 4

5

6

7

x

y

𝑝௫

𝑝௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠(𝑡𝑖𝑚𝑒)

𝑣௫

𝑣௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑣𝑒𝑙(𝑡𝑖𝑚𝑒)

59

60

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 26

Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 formulas found

case by case
(often not existing!)

 NO
(but, for instance, useful to
allow the AI to make
predictions)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 YES

Integration errors

 A numerical integrator only approximates
the real value of the integrals

 The discrepancy (simulation errors) accumulate
with virtual time
during all the simulation

 How much error is accumulated?
 It depends on dt !
 Small dt ⇒ more steps needed (for same virtual time)

⇒ more computationally expensive,
but smaller errors, i.e. more accurate simulation

61

62

3D Video Games
05: Game Physics - Dynamics - 1

2022-04-04

Marco Tarini
Università degli studi di Milano 27

Order of convergence

 How much does the total error decrease
as dt decreases?
 That’s called the Order of the simulation

 1st order: the total error can be as large as O(dt1)
 “if the number of physics steps doubles

(physical computation effort doubles)
dt becomes halves and errors can be expected to halve”

 The error introduced by each single step is O(dt2),

 The Euler seen is 1st order
 This is not too good, we want better
 Note: The error is usually not that bad as linear with dt,

but they can be

The integration steps dt of
any numerical methods (summary)

dt : delta of virtual time from last step
 the “temporal resolution” of the simulation!

 if large: more efficiency
 fewer steps to simulate same amount of virtual time

 if small: more accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 … 1 sec / 30
 i.e. a step simulates around 16 … 32 msec. of virtual time
 note: it’s not necessarily the same refresh rate of rendering

(FPS of rendering ≠ FPS of physics. Rendering can be less!)
 note: di dt is not necessarily the same in all physics steps

(need more accuracy now? Decrease dt

number of physics
steps per sec, or
«physics FPS»

63

64

