
3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

123

124

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 2

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box?
(rigid object)
In 2D a configuration of:
• 4 particles
• 6 equidistance constraints

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

125

126

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 3

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by
inertia)

even the system does not
(explicitly) handle rotations
or
angular velocities

(works in 3D as well!)

Example

FRAME 0 FRAME 1
final

-
implicit velocities

shown in blue

FRAME 1
dynamics

FRAME 1
constraints solving

(repeat until
convergence)

127

128

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 4

Enforcing a positional constraint:
the general case with masses.

 Check: does the equality/inequality hold?
 If so, nothing to do!
 Else:
 All positions must be displaced a bit, so that it does
 Infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses

 Find the minimizer by analytically
solving simple math problems
(“analytically” = in closed form = “on paper”)

Enforcing positional constraints in the
general case: formal problem definition

 We want to enforce a constraint 𝒞 on particles a , b , c, …
in positions 𝐩a ,

𝐩b ,
𝐩c

and with masses 𝑚a, 𝑚b, 𝑚c
, …

 𝒞 defined as an equality/inequality of 𝐩a
, 𝐩b

, 𝐩c
, … :

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ found by:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

129

130

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 5

Example:
the equidistance constraint

 To enforce the constraint
“particles a and b must stay at distance k ”
 input: current positions pa, pb

 input: masses ma, mb

 We need to the the displacements 𝑑ୟ , 𝑑ୠ
found by minimizing:

argmin
ௗ , ௗౘ

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that pa + 𝑑ୟ − pb + 𝑑ୠ = 𝑘

 And the solution (in closed form) is…

Equidistance constraints: solution for
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

131

132

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 6

Positional constraint example:
“please don’t sink under a plane”

 We want to enforce the constraint
“particle a must be above a given constant plane ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ , ௗౘ

ma 𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

133

134

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 7

More examples of
positional constraints

 Preserve volume of some object: «Volume is 𝑣 »
 How to impose it:
1. Estimate current total volume 𝑣

2. uniform scaling of the entire object of 𝑣 /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝐩ୟ »
 particles «pinned in position»
 trivial to impose, but useful!

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶
 e.g. on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 Non interpenetration

 this is part of collision handling – see collisions later

𝐩

𝐩

𝐩
𝛂

Position Based Dynamics
(PBD)

 A set of ideas for computing physics (dynamics)
 Ingredients:

1. Use Verlet integration
 velocity is implicit
 changes in positions induce changes in velocity

2. Implement positional constraints on particles
(e.g., equidistance hard constraint) to model:

 Rigid bodies
 Articulated bodies
 Impacts (maybe, add collision impulses, see later)

135

136

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 8

Rigid-bodies as compounds of
particles + constraints

 Interesting/rich/useful set of “emerging behaviors”
(they just automatically happen) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence
of
constraints
disallowing
compene-
tration

you don’t
need to
compute
or store
these

Rigid-body as (particles + constraints)
Challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted
 example: the transform (position + orientation) of the

“rigid body” is needed to render the associated mesh
 similarly: angular speed, barycenter pos, velocity…

137

138

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 9

Particles + constraint,
or rigid bodies?
 Rigid-body based systems:

 explicitly compute dynamics for rigid bodies
 also store their current orientation + angular velocity
 update them (just like position + velocity)

 Particles-based systems with PBD:
 only compute dynamics for particles
 rigid (or deformable, or jointed) bodies

as an emerging behavior

 Mixed systems:
 dynamically swap between the two representations

for rigid bodies
 how to pass from one to the other?

Examples: how to extract…

Particle Compound Rigid Body

p0

p1
p2

p3

masses m0…m3
initial positions r0…r3

positions p0…p3
velocities v0…v3

mass m
barycenter b
moment of inertia I (matrix)

position p (of barycenter)
velocity v
rotation (i.e. orientation) R
angular velocity a

?

ST
AT

IC
(o

n
in

it)
DY

N
AM

IC
(d

ur
in

g
si

m
.)

ST
AT

IC
DY

N
AM

IC?

?

139

140

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 10

3D video games

notes on the sand-box
coding done in class

Marco Tarini

Objective of this sandbox

Implement a PBD system
(particle based, with Verlet integration) on Unity
 Plan:

 do NOT enable default Unity physics system (physX)
 instead, implement our ad-hoc physics “by hand”, with scripts
 note: in a normal project, there’s no good reason to do this!

 How to NOT enable physics in Unity:
 Just don’t add, to any GameObject, (or remove them)

any “RigidBody” component (implements dynamics) and
any “Collider” component (implements collision handling)

 we will still use the normal Unity Graphics engine
 scene-graph support: GameObjects, their Transforms

144

145

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 11

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game Object

 It is a C# class, with predefined methods used by the
rest of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called at fixed interval,

just before the hard-wired physics step
 Update() – called before rendering this object

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Our Particles and their behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior class includes the fields:
 pOld (point): for Verlet dynamics

(“transform.position” is the current position)
 mass (scalar): constants

(public, so it is exposed in the GUI)
 similarly, we could also add drag (another scalar)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

146

147

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 12

Implementation detail:
pNow VS transform.position
 For each particle, the current position

is already stored as its transform.position :
 Technically, it’s the translation/position component of the

global transformation
 It’s not really a field, but pretends to be (C# property)
 Remember: physics always works in world space

 That is used by the rendering engine, the GUI, etc.
 For clarity, we use a local var pNow

at the beginning of the Verlet integration step:
pNow ← transform.position
at the end:
transform.position ← pNow

Fixed-update of particles

 Basic Verlet integration occurs here
 We may add velocity dumping
 see dump computation in prev slides

 Includes addition of any force
that depends only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 ground collision (“please stay above ground”)
 box collision (“please stay inside this 10x10 box”)

148

151

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 13

Adding “sticks”

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering (just for the looks):
 A stick is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (so, in the Update() method)

its transformation is computed anew,
so that the cylinder is scaled, rotated, and translated
to make it graphically connect the two particles

 This new transformation substitutes the old
 (therefore, it doesn't matter where we place them in the

scene: they will teleport to the right location at each frame)

Stick effects on physics

 Fields:
 References to connected particles A and B

This is a public field: set them in the Unity GUI !
 Rest length (scalar)

This is automatically computed on Start
as the initial distance between particles A and B

 Methods:
 FixedUpdate: enforces the positional constraints, acting on

the position (transform.position) of the two particles
 See slides for how this is to be computed from their current

positions and masses

152

153

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 14

Sand-box project: results.

 Combining multiple particles and sticks,
we construct meta-objects such as…
 Rigid objects
 TODO: ropes, pendulums

 Rigid objects exhibit a plausible…
 Angular velocity
 Angular momentum
 Corrent barycenter around which to rotate

(try assigning a different mass to a particle)
 Reaction of impacts with the ground / walls (bounces)

without having coded any of that

A problem in the current
implementation

 We are relying on Unity hard-coded mechanism to run the
FixedUpdates (and Start) methods for all scene objects
 Therefore, we have no control on the order in which they are run

 In particular, the positional constraints of the sticks are run
 only once per physics step
 either before, or after the Verlet integration step

 In theory, we want to enforce them
 just after swapping current and old positions
 and multiple times, or until convergence
 together with the collision of particles with ground etc

 Still, the simulation works with only small inconsistencies

154

155

