
3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

123

124

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 2

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box?
(rigid object)
In 2D a configuration of:
• 4 particles
• 6 equidistance constraints

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

125

126

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 3

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by
inertia)

even the system does not
(explicitly) handle rotations
or
angular velocities

(works in 3D as well!)

Example

FRAME 0 FRAME 1
final

-
implicit velocities

shown in blue

FRAME 1
dynamics

FRAME 1
constraints solving

(repeat until
convergence)

127

128

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 4

Enforcing a positional constraint:
the general case with masses.

 Check: does the equality/inequality hold?
 If so, nothing to do!
 Else:
 All positions must be displaced a bit, so that it does
 Infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses

 Find the minimizer by analytically
solving simple math problems
(“analytically” = in closed form = “on paper”)

Enforcing positional constraints in the
general case: formal problem definition

 We want to enforce a constraint 𝒞 on particles a , b , c, …
in positions 𝐩a ,

𝐩b ,
𝐩c

and with masses 𝑚a, 𝑚b, 𝑚c
, …

 𝒞 defined as an equality/inequality of 𝐩a
, 𝐩b

, 𝐩c
, … :

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ found by:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

129

130

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 5

Example:
the equidistance constraint

 To enforce the constraint
“particles a and b must stay at distance k ”
 input: current positions pa, pb

 input: masses ma, mb

 We need to the the displacements 𝑑ୟ , 𝑑ୠ
found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that pa + 𝑑ୟ − pb + 𝑑ୠ = 𝑘

 And the solution (in closed form) is…

Equidistance constraints: solution for
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

131

132

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 6

Positional constraint example:
“please don’t sink under a plane”

 We want to enforce the constraint
“particle a must be above a given constant plane ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

133

134

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 7

More examples of
positional constraints

 Preserve volume of some object: «Volume is 𝑣஼ »
 How to impose it:
1. Estimate current total volume 𝑣

2. uniform scaling of the entire object of 𝑣஼ /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝐩ୟ »
 particles «pinned in position»
 trivial to impose, but useful!

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶
 e.g. on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 Non interpenetration

 this is part of collision handling – see collisions later

𝐩௕

𝐩௖

𝐩௔
𝛂

Position Based Dynamics
(PBD)

 A set of ideas for computing physics (dynamics)
 Ingredients:

1. Use Verlet integration
 velocity is implicit
 changes in positions induce changes in velocity

2. Implement positional constraints on particles
(e.g., equidistance hard constraint) to model:

 Rigid bodies
 Articulated bodies
 Impacts (maybe, add collision impulses, see later)

135

136

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 8

Rigid-bodies as compounds of
particles + constraints

 Interesting/rich/useful set of “emerging behaviors”
(they just automatically happen) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence
of
constraints
disallowing
compene-
tration

you don’t
need to
compute
or store
these

Rigid-body as (particles + constraints)
Challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted 
 example: the transform (position + orientation) of the

“rigid body” is needed to render the associated mesh
 similarly: angular speed, barycenter pos, velocity…

137

138

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 9

Particles + constraint,
or rigid bodies?
 Rigid-body based systems:

 explicitly compute dynamics for rigid bodies
 also store their current orientation + angular velocity
 update them (just like position + velocity)

 Particles-based systems with PBD:
 only compute dynamics for particles
 rigid (or deformable, or jointed) bodies

as an emerging behavior

 Mixed systems:
 dynamically swap between the two representations

for rigid bodies
 how to pass from one to the other?

Examples: how to extract…

Particle Compound Rigid Body

p0

p1
p2

p3

masses m0…m3
initial positions r0…r3

positions p0…p3
velocities v0…v3

mass m
barycenter b
moment of inertia I (matrix)

position p (of barycenter)
velocity v
rotation (i.e. orientation) R
angular velocity a

?

ST
AT

IC
(o

n
in

it)
DY

N
AM

IC
(d

ur
in

g
si

m
.)

ST
AT

IC
DY

N
AM

IC?

?

139

140

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 10

3D video games

notes on the sand-box
coding done in class

Marco Tarini

Objective of this sandbox

Implement a PBD system
(particle based, with Verlet integration) on Unity
 Plan:

 do NOT enable default Unity physics system (physX)
 instead, implement our ad-hoc physics “by hand”, with scripts
 note: in a normal project, there’s no good reason to do this!

 How to NOT enable physics in Unity:
 Just don’t add, to any GameObject, (or remove them)

any “RigidBody” component (implements dynamics) and
any “Collider” component (implements collision handling)

 we will still use the normal Unity Graphics engine
 scene-graph support: GameObjects, their Transforms

144

145

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 11

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game Object

 It is a C# class, with predefined methods used by the
rest of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called at fixed interval,

just before the hard-wired physics step
 Update() – called before rendering this object

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Our Particles and their behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior class includes the fields:
 pOld (point): for Verlet dynamics

(“transform.position” is the current position)
 mass (scalar): constants

(public, so it is exposed in the GUI)
 similarly, we could also add drag (another scalar)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

146

147

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 12

Implementation detail:
pNow VS transform.position
 For each particle, the current position

is already stored as its transform.position :
 Technically, it’s the translation/position component of the

global transformation
 It’s not really a field, but pretends to be (C# property)
 Remember: physics always works in world space

 That is used by the rendering engine, the GUI, etc.
 For clarity, we use a local var pNow

at the beginning of the Verlet integration step:
pNow ← transform.position
at the end:
transform.position ← pNow

Fixed-update of particles

 Basic Verlet integration occurs here
 We may add velocity dumping
 see dump computation in prev slides

 Includes addition of any force
that depends only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 ground collision (“please stay above ground”)
 box collision (“please stay inside this 10x10 box”)

148

151

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 13

Adding “sticks”

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering (just for the looks):
 A stick is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (so, in the Update() method)

its transformation is computed anew,
so that the cylinder is scaled, rotated, and translated
to make it graphically connect the two particles

 This new transformation substitutes the old
 (therefore, it doesn't matter where we place them in the

scene: they will teleport to the right location at each frame)

Stick effects on physics

 Fields:
 References to connected particles A and B

This is a public field: set them in the Unity GUI !
 Rest length (scalar)

This is automatically computed on Start
as the initial distance between particles A and B

 Methods:
 FixedUpdate: enforces the positional constraints, acting on

the position (transform.position) of the two particles
 See slides for how this is to be computed from their current

positions and masses

152

153

3D Video Games
05: Game Physics - Dynamics - 3

2022-04-11

Marco Tarini
Università degli studi di Milano 14

Sand-box project: results.

 Combining multiple particles and sticks,
we construct meta-objects such as…
 Rigid objects
 TODO: ropes, pendulums

 Rigid objects exhibit a plausible…
 Angular velocity
 Angular momentum
 Corrent barycenter around which to rotate

(try assigning a different mass to a particle)
 Reaction of impacts with the ground / walls (bounces)

without having coded any of that

A problem in the current
implementation

 We are relying on Unity hard-coded mechanism to run the
FixedUpdates (and Start) methods for all scene objects
 Therefore, we have no control on the order in which they are run

 In particular, the positional constraints of the sticks are run
 only once per physics step
 either before, or after the Verlet integration step

 In theory, we want to enforce them
 just after swapping current and old positions
 and multiple times, or until convergence
 together with the collision of particles with ground etc

 Still, the simulation works with only small inconsistencies

154

155

