
3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 1

3D video games

Models for Games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games 
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 2

In games: “Low-Poly” models
(low resolution meshes)

by Phillip Heckinger (3D modeller)

Low-poly models

3

5

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 3

Metal Slug (1996, Nazca Copr), on Neo Geo (SNK)

Solomons’s key
(1986, Temco)
on Z80

reminder:
during the ’80s – early ‘90s,
the principal asset in games
consisted in
sprites / tilemaps authored
by pixel artists ...

Triangle Meshes
The visual appearance of 3D objects

 Data structure for modelling 3D objects
 GPU friendly
 Resolution = number of faces
 (Potentially) Adaptive resolution

 Used in games to represent the visual appearance
of 3D objects
 at least, the ones which can be represented by their surface
 most solid objects (rigid or not)

 Mathematically: a piecewise linear surface
 a bunch of surface samples “vertices”

connected by a set of triangular “faces”
attached side to side by “edges”

6

7

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 4

Triangle Mesh
(or simplicial mesh)

 A set of adjacent triangles
faces

vertices

edges

Mesh:
data structure
A mesh is made of
 geometry

 The vertices, each with pos (x,y,z)
 It’s a sampling of the surface

 connectivity or topology
 Faces connecting the vertices

 Triangle mesh: faces are triangles
(what the GPU is designed to render!)

 (pure) quad mesh: faces are quadrilateral
 Quad dominant mesh: most faces are quadrilateral
 Polygonal mesh: faces are polygons (general case)

 attributes
 Ex.: color, material, normal, UV, …

8

9

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 5

Mesh: geometry

 Set of vertices
 A position vector (x,y,z) for every vertex
 Coordinates, by definition, are given in Local space!

V2

V3

V5

V4

V1

Mesh: connectivity (or topology)

 Faces: triangles connecting vertices
 More in general, polygons,
 connecting triplet of vertices
 just as, in a graph, nodes are connected by edges

V2

V3

V5

V4

V1

T1

T2

T3

10

11

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 6

Mesh: attributes

 Any quantity that varies over the surface
 sampled at vertices, and interpolated inside triangles

V2

V3

V5

V4

V1

T1

T2

T3

RGB3

RGB2

RGB5

RGB4

RGB1

Mesh as a data structure:
“soup of triangles”

 Simply, a big array of triangles
 Each triangle stored as: a sequence of 3 vertices
 Each vertex stored as:

its x,y,z coordinates + attributes
 Problem: data replication
 Not memory efficient
 Inconvenient to update

(e.g., to animate)
 Seldomly used

most faces are adjacent
to each other
(adjacent faces share
the same vertices)

12

13

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 7

Mesh as a data strucuture:
indexed meshes

 array of vertices
 Each vertex stored as

 x,y,z position (aka the “geometry” of the mesh)
 attributes: (all vertices, the same ones)

any data saved on the surface: e.g. color

 array of triangles
 the “connectivity» (or, “topology”) of the mesh

 Each triangle stored as
 triplet of indices (referring to a vertex in the array)

 The two arrays can be seen as tables

we can consider
positions as

attributes too

An indexed mesh in GPU ram =
two buffers

V2

V3

V5

V4

V1

T1

T2

T3

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

vert X Y Z R G B

V1 x1 y1 z1 r1 g1 b1

V2 x2 y2 z2 r2 g2 b2

V3 x3 y3 z3 r3 g3 b3

V4 x4 y4 z4 r4 g4 b4

V5 x5 y5 z5 r5 g5 b5

GEOMETRY + ATTRIBUTES

CONNECTIVITY

14

15

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 8

Mesh resolution

 Defined as the number of faces
 or vertices, equivalent because typically #F ≈ 2 ∙ #V)

 Rendering time is linear with resolution
 therefore, in games, resolution is kept small
 aka. «low-poly» models

 Resolution can be adaptive:
 denser vertices & smaller faces in certain parts
 sparser vertices & larger faces in other parts

 Resolution of typical models increases with time
 e.g. 1990s: 105 △ is hi-res
 2000s: 1010 △ is hi-res

Resolution increases over time

800 △ Unreal Tournement
(1999)

Unreal Tounement 2K3
(2002)

3000 △

Unreal Tournament 3
(2007)

4,500 △
weapon this

12,000 △

16

19

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 9

Resolution increases over time

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

Mesh attributes: in general
(valid for all attributes)

 Any properties stored on the mesh,
varying on the surface
 Can be made of vectors, versors, or scalars

 Stored at each vertex
 Each vertex of a mesh = same collection of attributes

 It’s interpolated inside the faces
 Linear interpolation:

uses barycentric coordinates (see next slides)
 Note: by construction, in indexed meshes

attributes are C0 continuous across faces
 but C1 discontinuous across faces
 and C∞ inside faces

21

22

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 10

Interpolation of vertex attributes
inside mesh triangles 1/2

𝐩ଶ

𝐩ଵ

𝐩଴

𝐪

 A triangle 𝐓
with vertices 𝐩଴, 𝐩ଵ, 𝐩ଶ

 For every point 𝐪 in 𝐓
there are (unique!)
𝑘଴, 𝑘ଵ, 𝑘ଶ

with 𝑘଴ + 𝑘ଵ + 𝑘ଶ = 1
such that

𝐪 = 𝑘଴ 𝐩଴ + 𝑘ଵ 𝐩ଵ + 𝑘ଶ 𝐩ଶ

 𝑘଴, 𝑘ଵ, 𝑘ଶ are called the
barycentric coordinates of 𝐪 in 𝐓

Interpolation of vertex attributes
inside mesh triangles 1/2

per vertice

𝐩ଶ

𝐩ଵ

RGB2

RGB1

RGB0

𝐩଴

𝑘଴ 𝐩଴ + 𝑘ଵ 𝐩ଵ + 𝑘ଶ 𝐩ଶRGB0 RGB1 RGB2

𝐪

 Now assign
three attributes to the three
vertices

 A point 𝐪 in 𝐓
with baricentric coodinates
𝑘଴, 𝑘ଵ, 𝑘ଶ

is implicitly assigned
the attribute

23

24

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 11

 Position
(aka the “geometry” of the mesh)

 Normal

 Texture Coordinates
(aka the “UV-mapping” of the mesh)

 Tangent Direction

 Bone links
(aka the “skinning” of the mesh)

 Color

Which mesh attributes
are used in games: a summary (with spoliers)

see lecture on
animations

(later)

see lecture on
textures
(later)

see lecture on
normal maps

(later)

in
local

space!

Which mesh attributes
are used in games: a summary (with spoliers)

 Normal
 used for dynamic re-lighting

 Texture coordinates
 aka the “uv-mapping” of the mesh
 used for texture mapping

 Tangent direction
 used for normal mapping
 used for anisotropic lighting effects

 Bone links
 aka the “skinning” of the mesh
 used for skeletal animation

 Color
 used for baked lighting (e.g. ambient occlusion)
 used for «base» («diffuse») color (RGB)

SEE TEXTURES LATER

SEE TEXTURES LATER

SEE ANIMATIONS LATER

SEE RENDERING LATER

SEE RENDERING LATER

SEE RENDERING LATER

25

26

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 12

Mesh as tables

 Position
 Normal
 Color
 Texture Coordinate
 Tangent Direction
 Bone links

Tri: W1: W2: W3:

T0

T1

T2

T3

T4

T5

T6

T7

vert X Y Z Nx Ny Nz R G B A U V Tx Ty Tz Bx By Bz

V0

V1

V2

V3

V4

GEOMETRY + ATTRIBUTES

CONNECTIVITY

Mesh attributes: colors

 In games, colors on 3D models are usually
determined by textures (not by mesh colors)
 reason: more resolution in signal

 Per vertex colors can be used…
 To cheaply add variations models

 Red guards, blue guards

 To bake lighting
 e.g. baked per-vertex ambient occlusion see rendering later

 To dynamically recolor mesh parts
 e.g. redden the tip of a sword which is blood soaked
 e.g. accumulate dirty

 …and more

SEE RENDERING LATER

27

28

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 13

Mesh attributes: normals

 A versor
 Representing the surface orientation
 Main use: lighting computation
 Can be computed

automatically from
geometry...

 But it is a part of
the mesh assets:
 the artist is in control of

which edges are soft
and which are hard

Hard edges
(aka “creases”)

 Edges where the normal is not continuous .

 How to encode (C0) a discontinuity in the attributes?

Soft edge:

Red edges
are hard

29

30

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 14

answer:

Vertex seams

 Vertex seam = two coincident vertices in xyz
 (different attributes assigned to each copy)

a literal
“seam”

Vertex seams
 A way to encode any

attribute discontinuity
 Price to be paid:

a bit of data replication…

Tri: Wedge 1: Wedge 2: Wedge 3:

T0 0 1 4

T1 4 2 0

T2 5 3 6

X Y Z Nx Ny Nz

V0 𝑝𝑥𝟎 𝑝𝑦𝟎 𝑝𝑧𝟎 𝑛𝑥𝟎 𝑛𝑦𝟎 𝑛𝑧𝟎

V1 𝑝𝑥𝟏 𝑝𝑦𝟏 𝑝𝑧𝟏 𝑛𝑥𝟏 𝑛𝑦𝟏 𝑛𝑧𝟏

V2 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟐 𝑛𝑦𝟐 𝑛𝑧𝟐

V3 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟑 𝑛𝑦𝟑 𝑛𝑧𝟑

V4 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟒 𝑛𝑦𝟒 𝑛𝑧𝟒

V5 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟓 𝑛𝑦𝟓 𝑛𝑧𝟓

V6 𝑝𝑥𝟒 𝑝𝑦𝟒 𝑝𝑧𝟒 𝑛𝑥𝟔 𝑛𝑦𝟔 𝑛𝑧𝟔

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

= = =

= = =
31

32

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 15

Rendering of a Mesh
in a nutshell

 Load…
 get required data ready on GPU RAM

 Geometry + Attributes table
 Connectivity table
 Textures
 Shaders
 Parameters / Settings

 …and Fire!
 send the “Draw-call” to the GPU
 using an API

THE MESH

THE “MATERIAL”

Simplified architecture of PC with Video Card

34

BUS

CPU

ALU

(main)

RAM

Disk

Video Card

…Internal bus
(of video card)

RAM
(GPU)

GPU

33

34

3D Video Games
08: Meshes in Games
Part 1/2

2022-05-02

Marco Tarini
Università degli studi di Milano 16

Rendering of a Mesh
in a nutshell

 The algorithm to render a mesh (in games)
is based on rasterization
 It is outside the scope of this course. See CG course.
 In brief, three phases in cascade:

each vertex is projected on screen (“transform”),
(find where the vertex will be seen on the screen)

then each triangle is rasterized (converted into pixels)
then each pixel is processed (find the final color)

 For our purposes, rendering a mesh means just:
load all required data on the card on the GPU and
send the command to render it (the “draw call”)
 data includes the mesh itself (the two tables)
 plus the current transformations (from local space to view space)
 plus data describing the view: the “material”, including textures

Might change in
the future?

PER PIXEL PHASE

PER TRIANGLE PHASE

PER VERTEX PHASE

Rendering of a Mesh
in a nutshell
 A few things to know:

 It is a strongly parallel task
(all vertices, all triangles, all pixels can be processed in parallel)

 The entire procedure is implemented in the GPU
 It’s order-independent: we can draw mesh in any order we like.

The final result is the same
 Time cost:

O(number of vertices) = O(number of faces)
but also, O(number of covered pixels) --- so the slowest of the two

 The rendering procedure includes: animations (see later), lighting
 Because it’s GPU-implemented GPU, many things are hard-wired

 The data structures for the mesh are (indexed meshes or triangle soup)
 Only triangles as supported for faces
 Attributes are automatically interpolated inside face

 There’s a bit of customizability because GPU can be programmed
 Both the per-vertex phase (projection) and the per-pixel phase (lighting)
 “Shader” = custom program

Exception:
semi-transparent

“see through”
objects

35

36

