
3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games 
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Type of textures

 Each texel is a base-color (components: r,g,b)
 The texture is called a “diffuse-map” / “color-map” / “RGB-map”

 Each texel is a transparency factor (components: α)
 The texture is called a “alpha-map” or “cutout-texture” (exp. if 1bit)

 Each texel is a normal (versor, with components: x,y,z)
 The texture is called a “normal-map” or “bump-map”

 Each texel is a specular coefficient value
 The texture is called a “specular-map”

 Each texel contains a glossiness value
 The texture is called a “glossiness-map”

 Each texel is a baked lighting value...
 The texture is called a (baked) “light-map”

 Each texel stores a distance from a surface value
 The texture is called a “displacement map” or “height texture”

41

42

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 2

Cutout textures example
Texels = transparency level (0 or 1)

Alpha map

RGB map

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: drapes, beard...

by Micheal
Filipowski
2004

Texture
(RGBA, 4 channels)

43

44

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 3

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: trees, foliage

Texture mapping and Alpha Test

 Eg: fur, fur coats
The texture
(horizontally
tileable)
Pink is
transparent

45

46

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 4

Bump-Map (*)

a texture modelling (or, providing an illusion of)
shape details (i.e., high-frequency geometric features)
 details not modeled by the “real” geometry (the mesh)
 remember: meshes tend to be low-poly

 not much detail in them
 approach also known as “Texture-for-Geometry”
 rationale: texels are cheaper to render/store than

vertices!
 geometric details may extrude out or be engraved in

the “real” (mesh) surface
 in many cases: the detail affects lighting only

 sufficient to trick the eye
 especially with dynamic lighting

(*) This terminology not universal: e.g., «bump-map» can mean just «displacement map»

Types of Bump maps

Bump maps

Displacement
maps

Normal
maps

Object
Space

Tangent
Space

most commonly used

47

48

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 5

Types of Bump maps

Bump maps

Displacement
maps

Normal
maps

Scalar Vectorial Object
Space

Tangent
Space

most commonly used

Types of Bump maps

 Bump map:
 A texture encoding hi-frequency details

 Displacement Map:
 Details are encoded by storing differences between mesh geometry

and detailed surface:
 as scalars (distance along the normal), or as vectors
 used for: on-the-fly re-tessellation, and parallax mapping technique

 Normal Map:
 Details are encoded by storing the normals of the detailed surface
 used for: affecting the lighting
 In which frame?

 In Object Space: (requires 1:1 UV-map)
 In Tangent Space: (TBN space)
 Usable on more surfaces independently from the orientation
 Requires Tangent-Bitangent direction and normals on surface

49

50

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 6

Bump-Map:
from the modeler perspective

 macro-structure of the object  low-poly mesh
 e.g.: the general shape of the horse
 e.g.: the general shape of the face
 e.g.: the general shape of the dragon

 meso-structure of the object  bump-map
 e.g.: the musculature of the horse
 e.g.: the wrinkles of the face
 e.g.: the flakes of the dragon

 micro-structure of the object material parameters
 e.g.: the velvet-like fur of the horse
 e.g.: the structure of the dermis / sebum
 e.g.: the micro roughness / smoothnes of the flakes

“F
la

t s
ha

di
ng

”
(n

ot
 u

se
d

in
 g

am
es

)

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals
derived from geometry
(constant inside faces)

normals as
vertex attributes

(interpolated inside faces)

piecewise
flat surface

curved
surface

Sm
oo

th
 s

ha
di

ng
(s

ta
nd

ar
d)

As
 a

bo
ve

,
w

ith
 s

ea
m

s

51

52

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 7

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals as
vertex attributes

(interpolated inside faces)

curved
surface

N
or

m
al

 a
tt

rib
ut

es
w

ith
 S

ea
m

s

normals: texels from
a texture

detailed
surfaceN

or
m

al
 m

ap
pe

d
“F

la
t s

ha
di

ng
”

(n
ot

 u
se

d
in

 g
am

es
)

What it is: What it looks like:

normals
per face,

derived from geometry
(constant inside faces!)

normals as
vertex attributes

(interpolated inside faces)

piecewise
flat surface

curved
surface

Sm
oo

th
 s

ha
di

ng
(s

ta
nd

ar
d)

53

54

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 8

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals as
vertex attributes

(interpolated inside faces)

curved
surface

Sm
oo

th
 s

ha
di

ng
(s

ta
nd

ar
d)

As
 a

bo
ve

,
w

ith
 s

ea
m

s

What it is: What it looks like:

normals as
vertex attributes

(interpolated inside faces)

curved
surface

N
or

m
al

 a
tt

rib
ut

es

normals: texels from
a texture

detailed
surfaceN

or
m

al
 m

ap
pe

d

55

56

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 9

Displacement map :
concept

Stores the distance of the detailed surfaces
from the plain geometry

 example: a bump-map for a screw-head :

Detailed surfaces
(which I would like to represent)he

ad

of
 th

e

sc
re

w

low-poly mesh
(my approximation) (here: it’s flat )

displacement map
(scalars)

0 0 0 0 .1 .5 .6 .6 .7 .5 .4 .2 0 0 0 0 0 0 00 0 0

0.2
0.6

0.4

Displacement map: notes

 Each texel stores: a distance of the
detailed surface
 Along the normal direction (of low-poly mesh)
 1 scalar per texel –> 1 channel texture

 Which way:
 outwards (extrusions)
 inwards (excavations)
 or both (signed displacements)

 Storage:
 gray-scale image (1 scalar per pixel)
 remap values within the interval [0..1]
 global scale factor (on the fly)

 Possible uses:
 Direct lighting of implied normals: “embossing” effect

(old effect: it’s a bad approximation, not common anymore)
 Global illumination (ambient occlusion)
 «Parallax mapping» technique
 Intermediate data for the construction of a normal map

white = outwards
black = flat

See later

Easy to paint and
manipulate!

See later

See later

57

58

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 10

Vectorial displacement map :
concept

Store Vectors from the plain surface
to the detailed surfaces

Detailed surface
(I would like to model)

low-poly mesh
(approx. of ^) (here: flat )

displacement map
(vectorial)

“subsquare”!
Not an height field

More expressive
variant, but more
expensive
and less usable
Not widely used
(in games).

½ · + ½·(1-) = lighting

Displacement map (scalar):
Rendering – embossing effect

Image processing method
for approximating the lighting onto a
(scalar) displacement map

 concept:
finite differences : approximate 2D gradient
approximate (X,Y) normal surface 
approximate lighting

Displ.-map Displ.-map

(approximated)shifted: !

Approx. too rough:
non used anymore

(in games)

59

60

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 11

(scalar) Displacement map:
Rendering – parallax mapping

 Technique used render a mesh
with a Displacement Map
 Bonus: the silhouette

of the object can be affected

 See lecture on rendering
 And Real time CG course!

Image courtesy of https://cgcookie.com/articles/normal-vs-displacement-mapping-why-games-use-normals

Normal Map:
concept

Store the Normals of the detailed surfaces
 example -- a normal-map for a screw-head :

Detailed surface
(I would like to model)h

e
a

d

o
f t

h
e

sc

re
w

low-poly mesh
(approximation of ^) (here: flat )

normal map
(one normal per texel)

61

62

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 12

Normal Map:
notes

 Affects the lighting only
 not the parallax
 not the shape of the object
 The lighting reflects the hi-freq detail of the object

 dynamically (with variable lights!)
 Total illusion: very convenient

 If we are not trying to model a macro-structure
 In rendering: use the normal from the texture

 (for lighting)
 Instead of the interpolated per vertex normal

 Normals are expressed in cartesian coord
 Often

 But not always (∃ better ways to express unit vectors!)
 Question: ok, but in which space??? more later

Normal-Mapping see demo!

+ =

Low-poly mesh
(uv-mapped!)

Bump-map
(here: a

tangent space normal map)

lots of cheap
geometric detail

(apparently)

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Bump-map

63

64

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 13

Bump-Map

Same geometry (a sphere)
Different bump-maps

Normal Maps: in which space
are the normals encoded?

 Object space: Object-Space Normal-Maps
  the per-vertex normal becomes unnecessary!

 The normal from texture substitute it

  Trivial to apply (during rendering)
 just use the normal fetched from the texture for lighting

  normal-map is bound to a specific object
 cannot be reused for different objects

  Each region of the normal map is bounded to
one specific area region of the object!

 Injective UV-maps only!
 e.g. no tiling, no exploitation of simmetries

i.e, texture normals and
mesh vertices are expressed

in the same space

65

66

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 14

Tangent space
(aka TBN space)

 A vector space defined ∀ point of the surface:
 Z axis: Normal

 orthogonal to surface

 X and Y axis: tangent vectors
 parallel to the surface
 X = Tangent
 Y = “Bi-Tangent”

(sometimes, but inappropriately: *Bi-Normal)

Tangent space
(aka TBN space)

 How to store them?
 As 3 versors stored as

(per-vertex) attributes
 So, they

are interpolated inside faces
(like any other attribute)

 Optimizations are possible!
 Not necessarily stored as 3 vectors (9 scalars)
 E.g.: instead of storing B, we store N and T, then B = N × T

 Note: they have discontinuities
 seams (vertex duplications) are necessary
 In first approximation, the same ones required by the UV-map

(but non only! why?)

67

68

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 15

Tangent space
(aka TBN space)

 How to compute them?
 Normal

 as usual (see lecture on mesh)

 Tangent & Bi-Tangent
 determined by the UV-map!
 T = gradient of U coordinate
 B = gradient of V coordinate

 details:
 All three are defined and constant inside faces, then averaged at vertices

(see per-vertex normal computation)
 T,B,N can be only approximatively orthogonal to each other
 T,B,N reference frame can be left-handed or right-handed

(even different “handedness” in different parts of the same mesh)

Normal Maps: in which space
are the normals encoded?

 Tangent space: Tangent Space Normal-Maps
(the standard «bump-map», in games)
  extra attributes are now needed per vertex:

 Normal direction
 Tangent direction
 Bitangent direction

  normal-map can be shared by different objects
  non injective UV-maps can be used

 e.g., the normal-map can be tiled
 e.g., symmetries can be exploited

  normal-map is independent from the mesh
 e.g. can be constructed without knowing the mesh

The
tangent
space

basically, a TS normal map specifies how
to modify the per-vertex normal
instead of replacing it

69

70

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 16

Normal-map:
strorage

 Idea: store it as an RGB texture
 R ↔ X
 G ↔ Y
 B ↔ Z

 but X,Y,Z ∈ [-1,+1] and R,G,B ∈ [0,+1]
thus a linear mapping is needed:

 Advantage: reuse compression of RGB textures/images
 Extra: store a (scalar) displacement map in 4th texture channel
 But, note: other, more efficient representations of versors exists

+1

-1

0

1.0

0.0

X∈ R∈ X = 2 R – 1
R = ½ (X + 1)

(normals are unit vectors)

Normal-maps:
Storage

 Examples of
tangent space
normal-maps

Prevailing normal : X=~0 , Y=~0 , Z=~1
⇒
Prevailing color: R =~0.5 , G=~0.5, B=~1

(~light blue)

71

72

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 17

Per e.g.: Tiled
(tangent space) Normal Maps

+ =

UV-map
(using tiling!)
Tangent dirs.

Tileable!

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Normal-map

not possible with object-space NM!

Bump-maps assets at a glance
(can you tell which is which?)

Object Space
Normal map

Tangent Space
Normal map

Displacement
Map (scalar)

the default kind

73

74

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 18

Observe

Object Space
Normal map

1:1 UV-map
right leg != left leg

(Tangent Space)
Normal map

UV-map NOT injective
Exploited symmetries!

Left side of head = right side of head

Normal map comparison (a summary)
Object Space Normal map: Tangent Space Normal map:
Replaces the normals of the object Modifies the normals of the object

No normal attribute required
on the mesh any more

Requires two extra attributes on the mesh:
T an B versors (in addition to the normal)

Constructing the texture requires
to know the mesh it will be applied to

Textures can be constructed independently
from the mesh (just like a color map!)

E.g., a normal map cannot be constructed
from a displacement map (w/o the mesh)

E.g., a normal map can be constructed
from a displacement map

It’s impossible to share a normal map
between models (barring exceptions)

Normal maps can be shared between
different models

“unwrapping” UV-maps required
(barring exceptions)

Can be applied
to non-injective UV-maps

E.g., no tiled textures.
E.g., no symmetry exploitation

E.g., tiled textures ok,
E.g., symmetry exploitation ok

E.g., east-wall and south-wall of a castle:
different normal maps required

E.g., east wall and south wall of a castle:
same normal map.

Looks colorful (if encoded as RGB) Looks azure-ish (if encoded as RGB)

MUCH MORE USED IN GAMES

75

76

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 19

How to extract T and B vectors
from the UV-map

 Concept (a mental experiment)
 STEP 1: color a texture with a grid

 horizontal blue lines = U direction
 vertical red lines = V direction

 STEP 2: apply it to the Mesh!
 STEP 3: look at it:

 the T vectors are the Blue lines directions
 the B vectors are the Red lines directions

 T and B directions are defined in a trianglular face
 then, they are averaged at vertices
 (just like the normal directions!)

Mesh
GPU

Object

LOAD

Tangent Dirs (Tangent and Bitangent)
as per vertex attributes

DISK CENTRAL RAM GPU RAM

Mesh
Object

IMPORT

Mesh
File

PREPROCESS:
COMPUTE

TANGENT DIRS

WITH
TANGENT DIRS

(per vertex)

77

78

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 20

Extracting T and B vectors
from the UV-map (in a triangle)

 Object Space (3D)  Texture Space (2D)

𝐩଴

𝐩ଵ

𝐩ଶ

eଵ

eଶ
𝐪଴

𝐪ଵ

𝐪ଶ

t⃗ଵ

t⃗ଶ

u

v

𝐓
𝐁

y

xz⃗

Idea:
u is some linear combination of t⃗ଵ and t⃗ଶ ⟹ 𝐓 is the same linear combination of eଵ and eଶ

v is some linear combination of t⃗ଵ and t⃗ଶ ⟹ 𝐁 is the same linear combination of eଵ and eଶ

Extracting T and B vectors
from the UV-map (in a triangle)

 Input: 3D vertices 𝐩଴,ଵ,ଶ and 2D vertices 𝐪଴,ଵ,ଶ

 Find 3D edge vectors eଵ,ଶ

and 2D edge vectors t⃗ଵ,ଶ

 Find scalars 𝑎, 𝑏 and 𝑐, 𝑑 such that…

𝑎 t⃗ଵ + 𝑏 t⃗ଶ = u =
1
0

 𝑐 t⃗ଵ + 𝑑 t⃗ଶ = v =
0
1

 Then
T = 𝑎 eଵ + 𝑏 eଶ B = 𝑐 eଵ + 𝑑 eଶ

79

80

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 21

Extracting T and B vectors
from the UV-map (in a triangle)

 Input: 3D vertices 𝐩଴,ଵ,ଶ and 2D vertices 𝐪଴,ଵ,ଶ

 Find eଵ = 𝐩ଵ − 𝐩଴ t⃗ଵ = 𝐪ଵ − 𝐪଴

eଶ = 𝐩ଶ − 𝐩଴ t⃗ଶ = 𝐪ଶ − 𝐪଴

 Find scalars 𝑎, 𝑏 and 𝑐, 𝑑 such that…

 t⃗ଵ
ȉ
ȉ t⃗ଶ

𝑎 𝑐
𝑏 𝑑

=
1
0

0
1

 Then
T = 𝑎 eଵ + 𝑏 eଶ B = 𝑐 eଵ + 𝑑 eଶ

⟹
𝑎 𝑐
𝑏 𝑑

= t⃗ଵ
ȉ
ȉ t⃗ଶ

ିଵ

in matrix form: solve with a 2x2 matrix inversion

RGB maps:
How are they obtained?

 Image first, then UV-mapping
 e.g. Images from photos
 e.g. tileable images

UV-mapper

2D painter

/

3D modeller

/

81

82

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 22

RGB maps:
How are they obtained?

 Image first, then UV-map
 e.g., images that are photos
 e.g., tileable images

 UV-map first, then paint 2D
 paint with 2D app (e.g. photoshop)

 UV-map first, then paint 3D
 paint within 3D modelling software,
 or: 1. export 2D rendering,

2. paint over with e.g. photoshop,
3. reimport images
4. goto 1

UV-mapper

UV-mapper 2D painter

UV-mapper 3D painter

RGB maps:
How are they obtained?

…or:
 first paint 3D

 on hi-res model,
 “paint” on vertex attributes
 e.g. with Z brush…

 then coarsen
 build / autobuild final low-poly version

 then UV-map
 the low-poly model
 must be a 1:1 UV-map!

 then texture backing
 auto build texture

more
about
this later…

83

84

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 23

How are normal-maps obtained?
(1/5) from a displacement map

Displacement map
come grayscale

= extruded – outwards

= deep – carved in

Filter
(e.g.
photoshop)

2D texture
painter
/ etc

Normal map

see demo!

How are normal-maps obtained?
(1/5) from a displacement map

 Input: a scalar displacement map
Output: a normal map

 Algorithm (2D image processing):
 ∀ texel t of displacement map,

compute best fitting plane around t
 Consider all 3D points in a 3×3 patch surrounding t
 Find plane minimizing the summed squared distance from them
 It’s a least-squares minimization problem

 The normal of this plane is the normal for t
 Resulting normal map is expressed in tangent-space

 By definition! (one big advantage of Tangent Space NM)
 Can be converted into Object-Space if needed

(for a given UV-mapped mesh – injective maps only of course)

or 5×5,
or 7×7…

a texel at coords u,v
corresponds to
a 3D point
(u , v , height[u,v])

85

86

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 24

How are normal-maps obtained?
(2/5) painting on 3D

 Direct painting of normal- on the model
 (can be don, e.g., with Z-brush, Sculptris Alpha…)

 Similar to a painting of color-maps
 but artist paints geometric

details not colors

 Similar to mesh sculpting too
 but, for each stroke, the system directly

updates the normal on the texture-map,
not the geometry on the mesh

How are normal-maps obtained?
(3/5) captured from reality

 Captured form reality,
using photos

 Example: “Photometric Stereo”
 a form of “inverse lighting”
 a computer vision technique

 Input: n real images
 Same viewpoint
 Different illumination

 possibly, controlled and known
 Output: a Normal Map

 expressed in image space
 can be converted in object space,

or in tangent space

87

88

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 25

How are normal-maps obtained?
(3/5) captured from reality

 Normal map estimation from images
 Traditionally, many pictures are required in input
 Traditionally, controlled illumination is required

(I must place lights in known position)
 With Machine Learning,

it’s becoming possible to use a single image
with natural illumination

 Idea:
 input: a photo of a brickwall
 output: a diffuse map + a normal map + a specular map

 It’s an active area of research!

How are normal-maps obtained?
(4/5) procedural generation (not frequent)

 Usual considerations about procedurality:
 Saves RAM, costs GPU/CPU
 Can be baked

in preprocessing
(becomes an asset)

 Can be build
at run-time

 Bonus: no repetition
artifacts, animatable

 Problem: control difficult

89

90

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 26

How are normal-maps obtained?
(5/5) from a high-resolution model

 textures baking / detail recovery /
“detail texture” synthesis / texture for geometry

 input:
 hi-res mesh A with per-vertex attributes
 low-poly mesh B, with an injective UV-map

 output:
 textures for B storing the attributes of A

 a fully automatic process!

Texture baking:
texture synthesis from hi-res models
 input examples:

 low-poly mesh A obtained from hi-res mesh B
via automatic simplification or manual retopology

 hi-res mesh B obtained from low-poly mesh A
via sculpting

 output examples:
 attributes = normals

→ an object-space normal map is produced
 attributes = base colors

→ a diffuse maps is produced
 attributes = baked (global) lighting / AO

→ a light-map / AO-map is produced
 store distances between A and B (no attribute required)

→ a displacement map is produced

then converted
to tangent space (using mesh A)

common case!

91

92

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 27

Hi-res
mesh

Low-poly,
UV-mapped
mesh

automatic
simplification

still low poly,
but now textured!

rendering

TEXTURE SHEETS
Normal-map,
Color-map,

…
Texture
baking

Texture baking:
how to

Hi-res
model

Low-poly
model

Texture

u

v

find a suitable spot

Some
attribute

e.g.: color,
precomputed shading,

normal...
Code & Store

find a suitable spot

93

94

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 28

simplification
2K triangles

Scanned
500K triangles

Low Poly
2K triangles

Hi-res mesh
(sculpted)

Low-res mesh
(UV-mapped)

Example from Overgrowth - David Rosen & Aubrey Serr

95

96

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 29

Hi-res mesh
(sculpted)

Low-res mesh
(UV-mapped)
Low-res mesh + 1024² normal map

example from Overgrowth – by David Rosen & Aubrey Serr

example from Houdini 15 Mantra Rendering and Texture Baking Tutorial

6,272 △
low poly model
(UV-mapped)

6,272 △
+ 2048² normal map

6,422,528 △
(sculpted)

97

98

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 30

480,000 △
(scanned)

640 △
+ 1024² diffuse map
+ 1024² normal map

example by
“Total Baker”

3D point software

Example from cg-talks – CG society

99

100

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 31

Ex
am

pl
e

fr
om

 d
a

cg
-t

al
ks

 –
CG

 s
oc

ie
ty

ex
am

pl
e

fr
om

 c
g-

ta
lk

s
–

CG
 so

ci
et

y

101

102

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 32

Asset production pipeline
(a general concept in game-dev)

 A sequence of stages used to produce assets. Each stage:
 what is produced, starting from what
 using which tool(s), by which artist(s)
 storing which intermediate result(s), in which format, etc.

 Different pipelines for different classes of objects
 E.g. characters ≠ sceneries (“props”) ≠ equippable armours ≠ …
 Note: within a given game, all assets in a class are usually quite uniform

(comparable resolution, same set of texture sheets, same formats, etc.)

 In the past lectures, we mentioned many possible steps
 modelling (low poly modelling, sculpting, uv-mapping, LOD-ding…)
 texturing, geometric proxies, …
 TODO: the parts about animations (skinning + rigging + animation…)
 TODO: the parts about materials

 Identifying a good pipeline is not trivial!

Asset production pipeline:
an example
1. Concept drawings

 by a 2D artists
2. Low-poly model A

 by a 3D modeler, using low-poly editing tools
3. UV-mapping of A

 by a UV-mapper, or by automatic tool. output: an injective UV-map of A
4. Subdivision, then digital sculpting of Hi-Res model B

 by a 3D modeler, using digital sculpting tools
5. Painting over B

 using 3D painter, producing per-vertex colors
6. Texture baking

 Automatic construction of three Textures for A with attributes from B:
 Normals from B, (produces a normal map)
 Colors from B (produces a diffuse map)
 Baked lighting from B (produces a light-map)

103

104

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 33

Procedural Textures (in general)

 A function from (u,v) to texel values
 Plainly replaces a texture fetch!
 Computed during rendering for each pixel (fragment shader)
 Therefore, implemented in shader languages (e.g. GLSL, HSLS)

 Costs/benefits (the usual ones):
 RAM / bandwidth / storage cost: reduces to almost nothing
 GPU usage: can be substantial (it’s per pixel!)
 resolution independent (similarly to a vector image)
 control / authoring: can be difficult to get the desired effect

 Usually limited to simple images

see Lecture on Rendering
and Real Time Graphics course

e.g. diffuse colors,
normals,
transparency, etc

𝑓
𝑢
𝑣

=

𝑟
𝑔
𝑏

in [0..1] x [0..1]

105

106

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 34

Example: the flag of Japan
as a procedural RGB-map

𝑢

𝑣

1.0

0.5

0.3

1.00.5

𝑓
𝑢
𝑣

=

1
0
0

if
𝑢
𝑣

−
0.5
0.5

ଶ

< 0.3ଶ

1
1
1

otherwise

Solid Textures

107

108

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 35

Solid Textures

 Volumetric voxellized Texture: 3D array of texels
 1 texel == 1 voxel

 E.g. each voxel one color RGB  solid RGB textures
 As all the textures:

 In video RAM
 Fast access during rendering
 filtering (tri-linear) in access, MIP-mapping …

 Model color onto volume
 surface + internal
 useful, e.g., for fractures

 Note: no need of UV-map!
 Texture indexed by geometric mesh (rescaled)

 Problem: ram space
 Cubic wrt the resolution
 Solution: procedural 3D texture?

example by

Procedural Solid Textures

𝑓
𝑢
𝑣
𝑠

=

𝑟
𝑔
𝑏

109

110

3D Video Games
09: Textures in 3D games
Part 2/2

2022-05-12

Marco Tarini
Università degli studi di Milano 36

Procedural Solid Textures

Gyross – project by Paolo P. Slepoi

111

