
3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 1

3D VideoGames
Unimi

Animations in games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game Materials 
lec. 10: 3D Audio for 3D Games 
lec. 11: Networking for 3D Games 
lec. 12: Artificial Intelligence for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

1

3

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 2

Computer animation in games

1. of rigid objects
 animate scene transformations

(6 DoF per object)

Computer animation in games

1. of rigid objects
 or objects made of rigid sub-parts

5

6

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 3

Computer animation in games

2. Free-Form deformations
 generic transformations of the object

Computer animation in games

3. of articulated models
 internal skeleton
 most virtual characters!
 “skinning”

7

8

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 4

Types of animation
and DoF (per keyframe)

Rigid

Articulated

Free form

6 DoF per object
(or, e.g., 9, with anisotropic scaling)

~50-100 DoF per object
(e.g. 3 DoF per joint x 25 joints)

300-10.000 DoF per object
(e.g. 3 per-vertex)

DoF =
Degrees
of Freedom

Summary:
Types of authored animations

 of objects made of rigid subparts
 including joints: robots, cars…
 → use “(forward) kinematics animations”

(scripted changes of the modelling transforms)

 of deformable articulated objects
 with some internal skeleton
 e.g: most virtual characters:

humans / animals / monsters
 → use “skinning” / “rigging”

 of generic deformable objects (“soft bodies”)
 e.g., human faces, an umbrella opening, stuff with membrane…
 → use “blend shapes”

9

10

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 5

Animations in games

 a
 a
 Assets!
 Control: easy.

full control by artists
(e.g. for dramatic effect)

 Realism: hard
it’s up to the artist skill

 Flexibility: little
Doesn’t adapt to env.

 (consumes RAM)

 a
 a
 Physic engine
 Control: hard

 Realism: easy
built-in physical laws

 Flexibility: great
Adapts to env. / context

 (consumes GPU)

ProceduralAuthored

Animations in games:
authored, procedural… or a mix?

 A few examples of current commonly used mixes:
1: “primary” animations: authored

“secondary” animations: physically generated
2: alive characters: authored

dead characters: physically generated (“ragdolls”)
3: walk cycle: authored (skeletal animation)

exact feet placement: procedural (inverse kinematic)
4: normal “behavior”, such as sparring: authored

gaze control during sparring: procedural
5: normal “behaviors” such as jumping, running: authored

modifications / transitions: AI generated
and more!

 mixing AI-generated with authored animations is a frontier
in the field of Computer Animation!

11

12

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 6

Animations in games

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
Animations

(ASSETS) (PHYSIC ENGINE / ETC)

Ragdolling Inverse
kinematics

(general)
soft-body
simulation

usually
too expensive

Cloth/
garments

Ropes

Animations in games
(of 3D Solid Objects)

ProceduralNon-Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
Animations

Ragdolling Inverse
kinematics

(general)
soft-body
simulation

usually
too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

14

15

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 7

Asset for free-form animations:
Blend-shapes

 A.K.A:
 Blend-shapes
 Per-vertex animations
 Vertex-animations
 Face-morphs
 Shape-keys
 Morph-targets
 …

BARRY BLITT (THE NEW YORKER)

Blend shapes: concept

 Animation in 2D (old school) games:
a sequence of sprites

 Animation in 3D games:
just a sequence of meshes?

Walk cycle
(Monkey Island
LucasArt 1991)

16

17

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 8

Reminder:
representation of a mesh

 Indexed mode :
 Geometry:

 a 3D position for each vertex

 Attributes:
 more data, also stored in each vertex
 (to be interpolated inside faces)

 Connectivity:
 Array of triangles (faces)
 Each triangle = a triplet of indexes to vertex

Mesh (data structure)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert: Pos

V1 (𝒙, 𝒚, 𝒛)

V2 (𝒙, 𝒚, 𝒛)

V3 (𝒙, 𝒚, 𝒛)

V4 (𝒙, 𝒚, 𝒛)

V5 (𝒙, 𝒚, 𝒛)

geometry:

UV Col

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

18

19

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 9

Blend shapes (data structure)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert:
Base

Shape
Shape

1
Shape

2 …

V1 (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) …

V2 (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) …

V3 (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) …

V4 (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) …

V5 (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) (𝒙, 𝒚, 𝒛) …

geometries:

UV Col

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

(𝒖, 𝒗) (𝒓, 𝒈, 𝒃)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

V2

V3

V5

V4

V1

T1
T2 T3

V2 V3

V5

V4

V1

T1

T2

T3

Blend shapes

 A mesh with several associated geometries

 I.e. a sequence of meshes (‘shapes’) with
 shared connectivity
 many shared attributies

 except normals / tangents dirs
 shared UV-map, per vertex colors…

 different geometries
 (and shared textures as well)

 Variants (they are equivalent):
 Relative mode:

 base shape: stored as per-vertex positions (points)
 any other shape: stored as difference with base shape (vectors)

 Absolute mode:
 each shape stored as per-vertex positions (points)

aka ‘morph’
aka (key)-‘frame’
aka ‘shape-key’

20

21

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 10

Blend shapes
(as a data structure, e.g. C++)

 Indexed mesh :

class Vertex {
vec3 pos;
rgb color;
vec3 normal;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

Blend shapes
(as a data structure, e.g. C++)

 Blend-shape :

class Vertex {
vec3 pos [N_SHAPES] ;
rgb color;
vec3 normal [N_SHAPES] ;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

22

23

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 11

Blend-shapes:
most common interchange formats

 Simple:
 .MD5 (“quake”, valve)
 or, just store a sequence of meshes (es .OBJ)

 making sure connectivity is coherent!
(vertex, face ordering must be the same – can be tricky)

 Complex:
 .DAE (Collada)
 .FBX (Autodesk)

Uses of Blend-Shapes:
facial expressions

shape A shape B

here: shapes = facial expressions
(typical use; that’s why they are also called “face morphs”

24

25

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 12

Uses of Blend shapes:
temporal sequences

 shapes = keyframes

Uses of Blend shapes:
temporal sequences

 Temporal sequences
 shapes = keyframes

26

27

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 13

Blending keyframes of a temporal sequence

 shapes = keyframes of the animation
 shapeA with time 𝑡𝐴

 shapeB with time 𝑡𝐵

 shapeC with time 𝑡𝐶

 shapeD with time 𝑡𝐷

 given current time 𝑡 with 𝑡𝐵
≤ 𝑡 ≤ 𝑡𝐶

 then…
 which shapes to blend?
 weights?

shapeB , shapeC

𝑤𝐵
=

𝑡 − 𝑡஼

𝑡஻ − 𝑡஼
 𝑤𝐶

= 1 − 𝑤B =
𝑡 − 𝑡஻

𝑡஼ − 𝑡஻

Blending keyframes of a temporal sequence
with transition functions
 shapes = keyframes of the animation
 shapeA with time 𝑡𝐴

 shapeB with time 𝑡𝐵

 shapeC with time 𝑡𝐶

 shapeD with time 𝑡𝐷

 given current time 𝑡 with 𝑡𝐵 ≤
𝑡 ≤ 𝑡𝐶

 then…
 which shapes to blend?
 weights?

shapeB , shapeC

𝑤𝐵
= 𝒇

𝑡 − 𝑡஼

𝑡஻ − 𝑡஼
 𝑤𝐶

= 1 − 𝑤B

transition function

28

29

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 14

Transition functions
(applies to all animation types with keyframes)

 Not necessarily
the Linear one

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

 Not necessarily
the Linear one

NB: = extrapolation !
i.e. exaggeration

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

Transition functions
(applies to all animation types with keyframes)

30

31

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 15

Uses of Blend shapes:
facial animations

Here, used together with skeletal animations (see next lecture)
(for mandible, neck, eyeballs)

34

35

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 16

Blending shapes of a blend-shape

ୠ ଴ ଵ ଶ

using Absolute Encoding using Relative Encoding

ୠ ଴ ଵ ଶ

base shape (positions)

S଴ − Sୠ Sଵ − SୠSୠ + R଴ Sୠ + Rଵ

base shape (positions)

shapes (positions) shapes (vectors)What
is

stored

two shapes
𝑖 and 𝑗

𝑤௜ S௜ + 𝑤௝S௝

Eq
ui

va
le

nt
 w

ay
s

to
 b

le
nd

…

Sୠ +𝑤௜ R௜ + 𝑤௝R௝

Sୠ + 𝑤௜ R௜ + 𝑤௝ R௝ + 𝑤௞ R௞

etc

𝑤௜ S௜ + 𝑤௝ S௝ + 𝑤௞ S௞

three
shapes

𝑖,𝑗 and 𝑘

Σ𝑤 = 1

Blending shapes of a blend-shape

ୠ ଴ ଵ ଶ

using Absolute Encoding using Relative Encoding

ୠ ଴ ଵ ଶ

base shape (positions)

S଴ − Sୠ Sଵ − SୠSୠ + R଴ Sୠ + Rଵ

base shape (positions)

shapes (positions) shapes (vectors)What
is

stored

base shape
with
one shape 𝑖

(1 − 𝑤)Sୠ+ 𝑤 S௜

Eq
ui

va
le

nt
 w

ay
s

to
 b

le
nd

… Sୠ + 𝑤 R௜

Sୠ + 𝑤௜ R௜ + 𝑤௝ R௝
(1 − 𝑤௜ − 𝑤௝)Sୠ+

+ 𝑤௜ S௜ + 𝑤௝ S௝

(1 − 𝑤௜ − 𝑤௝ − 𝑤௞)Sୠ+

 𝑤௜ S௜+ 𝑤௝ S௝ + 𝑤௞ S௞
Sୠ + 𝑤௜ R௜ + 𝑤௝ R௝ + 𝑤௞ R௞

base shape
with two
shapes (𝑖,𝑗)

base shape
with three
shapes

Σ𝑤 = 1

36

37

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 17

 The two ways to store a bland-shape are equivalent
 They can achieve the same set of morphed shapes
 Note: when Σ𝑤௜=1 the formula for absolute is simpler
 Note: when Σ𝑤௜>1 it becomes an extrapolation (beware)

 The absolute way is more natural when shapes are designed
to be used as alternatives (and Σ𝑤௜=1)
 Examples: keyframes of an animation sequence

 The relative way is more natural when shapes are designed
to be superimposed with various degrees of strength. E.g.:
 shape0 = close left eye
 shape1 = smile
 shape0 + shape1 = wink

 shape0 = fat
 shape1 = long chin
 0.4 shape0 +

0.9 shape1

a bit fat &
quite long chin=

Blending shapes of a blend-shape: notes

38

42

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 18

Using facial animations as
Blend shapes

 3D Modeller authors:
produces the blend-shapes (aka: the “facial rig”)

 Animator (of expressions) picks:
weights
 eg.: with sliders
 assisted / substituted by automatisms

 e.g., lip sync
 e.g., dynamically determined expressions

 Keyshape Blending: by rendering engine

Uses of Blend-Shapes:
generic deformations

 Baked poses

43

44

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 19

Uses of Blend-Shapes:
variants of one given object

 mixable!

masculine outfit feminine outfit

Uses of Blend-Shapes
variants of one given object

 mixable!

human orc goblin dwarf

45

46

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 20

Uses of Blend-Shapes

 Defines shapes of a class of objects
 get a shape in the class = just choose the weights

 3D modelling at a high-level of abstraction
 the weights “span” one shape space

 one given shape = one point in the space
 weights = coords

 the space is the more useful the more:
 all and only the reasonable shapes

are represented in the space
 Typical Example: face morphologies

 “face-space”
 note: face morphology ≠ facial expression

Uses of Blend shapes

 A blend shape modelling a face space (“face-morphs”)

47

48

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 21

All morph-shape share…
(so, a blend-shape cannot change)…

 The mesh connectivity
 Eg. no change mesh res, remeshing

 Therfore, the surface topology
 E.g. no breaking apart, fusing parts

 The mesh attributes
 Such as color, UV-map…
 Exceptions: positions, normals

 The textures
 Use a texture animation instead?

Blend shapes:
authoring

1. Editing base shape
 including:

uv-mapping, texturing, etc.

2. Re-edit it
for each shape-key!
…while preserving:
connectivity,
textures, etc:
 with low poly editing
 or with subdivision surfaces…
 or with parametric surfaces…
 or with scupting.

49

50

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 22

Blend shapes:
authoring

 Handbook for
blend-shape based
face animation:
 “Stop Staring”

(3d edition)
Jason Osipa

 Covers: style,
expression…

 Non technical
(high level)

 Not about specific tools
e.g. Blender, Maya

Blend shapes:
pros and cons

 During authoring:
👍 flexible, expressive,

huge number of DOF…
(too many?)

👎 work intensive
to construct

👎 expensive to store

 During use (by animator)
👍 easy to use (just define global weights)
👎 RAM cost
👎 very little degree of freedoms

(too few?)

but, not as bad as old sprites,

because
(1) shared of connectivity,

textures, attributes
(2) keyframes / inbetweens!

51

53

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 23

Blend shapes:
open challenges

 Capturing:
 from a stream of meshes
 e.g. : from a RGBD camera (like Microsoft Kinect)

to a blend-shape: difficult!
 Compression

 e.g.: reduce number of keyframes
 Streaming

 server sends animation to client while it runs
 LOD-ding

 like for meshes
(but more difficult)

(ASSETS) (PHYSIC ENGINE / ETC)

Animations in games

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Ragdolling Inverse
kinematics

(general)
soft-body
simulation

usually
too expensive

Cloth/
garments

Ropes

Kinematic
Animations

54

55

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 24

Scene graph

Ta
Tb

Ta0 Ta1 Ta2 Ta3

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Tc

Animated Scene graph…
(“kinematic” animations)

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Time: t0 t1 t2 t3 t4

Trasform: TR0 TR1 TR2 TR3 TR4

Ta
Tb

Ta0 Ta1 Ta2 Ta3

56

57

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 25

Interpolating keyframes
(applies to all kinds of asset animations)

 Keyframes
+
in-betweens (interpolation)

keyframe A keyframe B
0.5 ∙ keyframe A

+
0.5 ∙ keyframe B

Keyframe interpolation
(for kinematic animations)

time A = 100ms

time B = 200ms

time curr. = 150ms?
keyframe A

keyframe B

TA

TB

Ti = ?

interpolated

* Ti = mix(TA, TB, 0.5)

*

59

60

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 26

(ASSETS) (PHYSIC ENGINE / ETC)

Keyframes
and inbetweening

ProceduralNon Procedural

Rigid

Articulated

Free form

Rigid body
dynamics

Ragdolling Inverse
kinematics

(general)
soft body
simulation

usually
too expensive

Cloth/
garments

Ropes

stored Keyframes
+
generated in-betweens

stored Keyframes
+
generated in-betweens

stored Keyframes
+
generated in-betweens

Keyframes and in-betweens
(applies to all kinds of asset animations)

 The animation asset stores only a subset of frames
(“key”-frames)
 each with its own associated time

 Other frames (“inbetweens”) are interpolated keyframes
 👍 saves storage RAM
 👍 saves artist work (only keyframes are constructed)
 👍 animation can very smooth (avoids temporal aliasing)

e.g. even when played at extreme slow-motion
 requires ability to interpolate (key) frames!

“timeline”

= keyframe

𝑡଴ 𝑡ଵ 𝑡ସ𝑡ଶ 𝑡ଷ

duration of animation

61

62

3D Video Games
10: Animation in Games
Part 1/3

5/16/2022

Marco Tarini
Università degli studi di Milano 27

Keyframes and in-betweens
(applies to all kinds of asset animations)

 keyframes distribution can be adaptive
 more keyframes only where needed

 inbetweening happens on demand
 e.g., at each refresh of video

 keyframe times can be at arbitrary
 not necessarily exact frames, not necessarily integers
 all frames shown on screen will be in-betweens

 the better the interpolation schema
→ better in-betweens → fewer keyframes are needed

 editing the animation:
 editing individual keyframes
 editing keyframe times (e.g., to achieve non-linearity of moment, vary speed)
 1. pick a new time 𝑡𝑖 (not a keyframe)

2. bake the in-between at t as a new keyframe
3. edit it!

the “temporal resolution” of the animation

asset

Kinematic animations

 Just compute new transformations per frame
 Often, just the rotation component

(translation is constant)

 Or store transformations per keyframe
 Then, interpolate them for any other frame

between keyframes

 By cumulating the transformations in the graph, we
can compute the final position of every node
 This is called solving a “forward kinematic” problem
 The inverse problem (from final position of certain nodes,

compute the transform, especially the rotation) is called
“inverse kinematic” (IK)

for certain nodes
in the scenegraph

63

64

