
3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 1

3D VideoGames 2021/2022
Università degli Studi di Milano

Networking for 3D Games

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game Materials 
lec. 10: Networking for 3D Games 
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: 3D Audio for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

1

2

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 2

Player 2 has joined the game

 Multiplayer game types, according to gameplay
 collaborative
 competitive
 versus
 teams…

 How much multiplayer?
 no: single player
 2 players?
 10 players?
 >100?
 > 1000? («massively» multiplayer, MMO)

Player 2 has joined the game

 Types of multiplayer games
 Hot-seat

 players time-share

 Local multiplayer (Side-to-side)
 e.g., split screen
 players share a terminal

 Networked
 each player on a terminal
 terminals connected…
 …over a LAN
 …over the internet

Needs networking

3

4

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 3

Networking in Games

 One task of a Game Engine

 Different scenarios:
 number of players? (2, 10, 100, 100.000?)
 game pace? (real time action ≠ chess match)
 joining ongoing games : allowed?
 cheating : must it be prevented?
 security: is it an issue (e.g. DoS attacks)
 medium : LAN only? internet too?

Letency tolerance? Bandwith tolerance?

(see course on: Online Game Design)

Networking in 3D Games

Objective: all players see and interact with
a common 3D virtual world

how can this illusion be achieved?

5

6

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 4

Dev choices
for a networked-game

 What to communicate?
 complete status, status changes, inputs…

 How often ?
 at which rate

 Over which protocol ?
 TCP, UDP, WS …

 Over which network architecture ?
 Client/Sever, Peer-To-Peer

 How to deal with networking problems
 latency (“lag”) <== one main issue
 limited bandwidth
 connection loss
 loss of packets

Reminder: Protocols

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

(see course on: Computer networks)

7

8

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 5

Protocols

 Connection based
 Guaranteed reliable
 Guaranteed ordered
 Automatic breaking

of data into packets
 Flow control
 Easy to use,

feels like read and write
data to a file

 What’s a connection? 🤷
 No reliability
 No ordering
 Break your data

yourself
 No flow control
 Hard.

Must detect and deal
with problems yourself.

UDP socketsTCP sockets

UDP vs TCP

 Problem with TCP
 too many strong guarantees

 they cost in terms of latency (==>lag)!
 no good for time critical application

 (if they must be used, at least enable
the option TCP_NODELAY)

 Problem with UDP
 not enough guarantees

 guarantees: “packets arrives all-or-nothing”. The end.
 no concept of connection
 no timeouts, no handshake, a port receives from anyone

 no guarantees: packets can arrive…
 …out of order :-O , …not at all :-O , …in multiple copies :-O

caching?
no, thank you

Nagle’s
algorithm

Nagle’s
algorithm

9

10

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 6

UDP vs TCP

 Problem with TCP
 too many costly guarantees

 Problem with UDP
 not enough guarantees

 The hard way:
 use UDP,

but manually re-implement a few guarantees
 best, for the most challenging scenario

 fast paced games, not on LAN

Virtual connections over UDP:
how-to (notes)

 add connection ID to packets
 to filter out unrelated ones

 time out on prolonged silence (~ few secs)
 declare “connection” dead

 add serial number to packets
 to detect when one went missing / is out of order / is duplicate
 (warning: int numbers do loop – solutions?)

 give ack back for received packets
 optimize for lucky (& common) cases!

 N (say 100) received msg == 1 ack (with bitmask)
 resend? only a few times, then give up (data expired)

 congestion avoidance: measure delivery time
 tune send-rate (packets-per-sec) accordingly

 obviously: NON blocking receives!

what TPC
doesn’t
understand

11

12

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 7

Choosing a Protocol

 In summary, it is a question of pacing
 fast paced game?

 action games, FPS, …
 (sync every 20-100 msec)

 slow paced game?
 RTS, RPG…
 (sync every ~500 msec)

 slower paced games?
 MMORPGs, cards …
 (sync every few sec)

 traditional turn based ?
 chess, checker
 (sync every hour/day)

UDP necessary
(unless LAN only)

can get away with TPC

why not just HTTP

may as well use EMAIL

In Unity:

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

UDPTCP

IP

HTTPWS

Network Transport

Network Manager

 transport layer

 high level layer

13

14

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 8

In Unity:

 Low level: Transport Layer
 Builds up guarantees over UDP (connections)
 Easy to use as TCP, but optimized for games

 see how-to list above
 Can work over WS instead UDP (abstracts the differences)

 WS needs be used for web / WebGL games
 Hi level: Network Manager

 presets network connectivity
 standard “client hosted” games

 server is also a player
 controls shared state of the game
 deals with clients
 sends remote commands

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

15

16

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 9

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer (on different devices)

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

Controls and Agent
(a useful abstraction)

LAN multiplayer

(P1) agent

(P2) agent

virtual environmentvirtual environment

Player 1

Player 2

L A N

17

18

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 10

Controls and Agent
(a useful abstraction)

single player, versus AI

Player Agent

NPC Agent

virtual environmentvirtual environment

Player

AI

Controls and Agent
(a useful abstraction)

replay! (e.g. attract mode of old Coin-op)

Agent 1

Agent 2

virtual environmentvirtual environment

recorded history 1

recorded history 2

19

20

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 11

Model: Peer-to-peer
Network topology: complete

Model: Client / Server
Network topology: star

Client A

Client C

Client B

Client D

Game
Server

21

22

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 12

Networking paradigms for games
we will discuss

 Deterministic Lockstep on P2P
 Deterministic Lockstep
 Game-Status Snapshots
 Distributed Physics (just notes)
 Game-Status Snapshots

with Client-Side predictions
 Cloud gaming

on client-server

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

23

24

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 13

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

Deterministic Lockstep
(on Peer-to-Peer)

 Game evolution = sequence of “turns”
 e.g. physics steps (fixed dt !)

 Each node sends its current controls (inputs)
 to everybody else

 After all controls are received,
each node computes its own evolution
 deterministically:

same input  same result

even if
independently computed

25

26

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 14

physics

rendering

Deterministic Lockstep
(on peer-to-peer network)

PLAYER 1

FIRE BUTTON PRESSED

WEAPON HAS FIRED

lantency (“lag”)

PLAYER 2

physics

P1 HAS FIRED

rendering

Deterministic Lockstep:
the good

 elegant and simple! 
 minimal bandwidth needed

 only sent data = controls
 compact! (e.g., a bitmask)

 does not depend on complexity of virtual environment
 cheating: inherently limited

 but a few ways to cheat are still possible,
e.g.:
 aim-bots (unlawful assist from AI)
 x-rays (unlawful reveal of info to player)

 mixes well with:
 non-cheating AI, replays, player performance recording…

 can use simple TCP connections
 because we need 0% packet loss anyway (but…)

27

28

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 15

Deterministic Lockstep:
can as well use TPC instead of UDP ?

 why yes:
 TPC is simple to use

 It takes care of everything
 works well, when no packet loss

 on loss, we need resend it anyway: let TPC do that
 makes little sense to use UDP and then…

try to re-implement all TPC over it
 at the beginning of dev,

UDP is a (premature) optimization
 why not:
 to degrade better with packet loss
 e.g.: use redundancy – instead of resend-on-failure

 controls are small: send 100+ controls in every packet
 keep resending until ack received

29

30

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 16

Deterministic Lockstep

 Common, e.g., in:
 RTS

 controls = orders
 can be fairly complex
 but game status =

much more complex

 first generation FPS
 controls =

[gaze dir + key status]

Doom ID-soft, 1998…why not anymore?

Command and Conquer
EA / Westmany et al
1995..2012

Starcraft Blizzard 1998-2015

Age of Empires
Ensemble Studios et al,
1998..2015

Deterministic Lockstep
(on peer-to-peer): the bad
 responsiveness:

 input-to-response delay of 1 x delivery time (even locally!)
 (you cannot act immediately even on your own local input)

 does not scale with number of players
 quadratic number of packets
 2P ok, 100P not ok

 input rate = packet delivery rate
 delivery rate = as fast as the slowest connection allows
 if connection problems (anywhere): everybody freezes!
 joining ongoing games: difficult to implement

 needs sends full game state to new player
 assumes full agreement on initial conditions

 this is not problematic
 assumes complete determinism!

 this can be problematic

31

32

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 17

Determinism: what can break it

 Pseudo-Random?  not as problem
 fully deterministic (just agree on the seed)

 Physics: many preclusions and traps
 variable time step? bad
 time budgeting? bad
 hidden threats:

order of processing of particles/constraints
 anything that depends on clock?
 poison to determinism

 GPU computations? very dangerous
 slightly different outcome on each GPU model

 floating point operations?
 hidden dangers,

different hardwired implementations
 best to assume very little (fixed point is 100% safe)

 NOTE: 99.999% correct == not correct
 virtual world is faithful to reality enough to be chaotic butterfly effect:

the tiniest local difference == expect completely different outcomes soon

The entire game system
must be designed
from the start with
“determinism” in mind …

…and still, it difficult to get
(and debug)

Model: Peer-to-Peer
Network topology: Fully Connected

Peer A

Peer C

Peer B

Peer D

33

34

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 18

Model: Client / Server
Network topology: star

Client A

Client C

Client B

Client D

Game
Server

Deterministic lockstep
on Client-Server

 Server sits on the central node
 Protocol:
 Each client sends his controls to server
 Server collects all controls and sends them back to clients

 Advantage:
 scalability:

number of packets is linear (not quadratic)
 Cost:
 responsiveness:

latency = 2 × delivery time :-O
 Bonus: the server can now be made authoritative
 Many new options available. For example…

hurts
gameplay!

35

36

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 19

“Server is the man” *
(authoritative server)

 The server has the last word
 For example:
 Packet loss from player 3?

Server makes up controls for player 3
(instead of waiting for them)

 Note: server defines what player 3 eventually did,
not player 3 itself!

 i.e., clients take server’s word even for its own actions
 Packet loss affects one player only

* Tim Sweeney (Unreal)

Client-Server

Client A

Client B

Game
Server

37

38

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 20

“Game-Status Snapshots”
paradigm

1

Client A

Client B

2

2

1

Game
Server

Physics / AI

Quake – id Soft – 1996

39

40

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 21

Game-Status Snapshots

 Client:
 just a remote visualizer

of the current status
 status is “read only”

 remote input collector

 Server:
 computation of the

evolving status
 including physics

 it’s where
the “real game” runs

Game-Status Snapshots

 Client:
 connected:

to server only
 captures input
 sends controls
 receives game status

 or relevant portions of it

 renders it
 using all relevant assets

 Server
 connected:

to all players
 receives all controls

 (missing? doesn’t matter)

 updates game status
 physical simulations, etc

 sends current status
 to all

Physics,
cosmetic
effects only

Physics
Graphics

UISounds

AI

Scripts

41

42

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 22

Game-Status Snapshots

 the gains:
 determinism: no longer needs be assumed
 joining ongoing games: trivial now
 packet loss: bearable (hurts the player only)

 to profit: UDP
 slower connection: bearable (affects that player only)

 the losses:
 packet size: a lot bigger!

 optimizations, to counter this:
 compress world status
 send to each client only the portions which interest its player

 responsiveness:
from input to effect = delivery time :-(
from input to visual = 2 x delivery time :-O hurts

gameplay!

Game-Status Snapshots

PLAYER 1 SERVER

Physics / AI

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

43

44

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 23

Game-Status Snapshots

PLAYER 1 SERVER

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

Game-Status Snapshots:
with Interpolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 1: client-side interpolation
 client keeps last two snapshots in memory

 last received one + the previous one
 interpolates between them,

 client lags behind server by even more!
 gain: smoothness (high FPS with low packet - rate)
 loss: responsiveness (increased latency) oh noes!

45

46

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 24

Game-Status Snapshots:
with Extrapolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 2: client-side extrapolation
 clients keeps last two snapshots in memory

 last received one + the previous one
 extrapolates between them, i.e., shows the expected “future”

 i.e. it shows an attempted prediction to the next snapshot
 NOTE: this prediction is often wrong: glitches.

 gain: responsiveness
 loss: accuracy - lots of glitches. :-(

Partial Client-side Game Evolution
(aka distributed physics): the idea
 Each client:

 in charge for game evolution
 including physics

 communicates to others
a reduced game-status snapshot
 describes only status of own player

(e.g. positions + ori, its flying bullets)
 receives other partial snapshots
 merges everything up

 (updates statuses of other players)
 Simple, zeroed latency

 immediately responsive to local player controls
 remote agents updated according to “what their client says”

 Problem: can still need determinism
 (who keeps NPCs / environment in sync?)

 Problem: authoritative clients : prone to cheating!!!

to server,
or , in a P2P network,
to each other peers

47

48

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 25

Client-Side Prediction:
the idea

 Client:
 get Commands from local inputs
 sends Commands to Server
 computes game evolution (the prediction)

 maybe “guessing” other players commands (which it ignores)
 zero latency!

 Server:
 receives Commands (from all clients)
 computes game evolution (the “reality”)

 server is authoritative
 prevents many forms of cheating

 sends Snapshot back (to all clients)
 Client:

 receives Snapshot (the “real” game status)
 corrects its prediction, only if needed

Client-Side Prediction
with corrections from the server

 The server-side “real” simulation
lives k msecs in the past
of the client-side “predicted” one
 k = deliver time
 remember: virtual time != real world time

 When server correction arrives to client,
it refers to 2k msecs ago (for the client)

 Q: how to correct… the past?

49

50

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 26

Client-Side Prediction

t=0

t=0

keypress

t=1

t=2

t=3

t=4

t=5

t=1

PLAYER 1 SERVER
pr

ed
ic

tio
ns

reality

Client-Side Prediction

t=0

t=1

t=2

t=3

t=0

t=1

t=4

t=5

t=2

t=3

t=4

PLAYER 1 SERVER

51

52

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 27

Client-Side Prediction:
correction from the server

 Q: How to correct… the past?
 A:
 keep last N statuses in memory

 including own controls
 as the “real” status (the correction) of the past

arrives from server…
 …compare it with stored past status

(at corresponding time):
 does it match?

nothing to do
 does it mismatch?

discard frame and following ones,
rerun simulation to present (reusing stored controls)

optionally:
within
a tolerance

Re-running physical simulation

 We just need to catch up with the present
 Physics and AI only
 no graphics, no sound rendering,

no cosmetic particle system…
 At full speed: can use larger 𝑑𝑡 if necessary
 This only compromises accuracy a bit

 Must reuse same controls of own player and other’s
 Which are also cached

 Note: player is never shown these intermediate steps;
only the final result

 The price to be paid: Glitches when going from current
present to a different (corrected) present

53

54

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 28

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11

PLAYER 1 SERVER

=?=

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11 t=12 t=13 t=14

PLAYER 1 SERVER

=/=

55

56

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 29

Client-Side Prediction:
what causes mispredictions?

 Lack of determinism
 e.g., physics was approximated – “soft real time”
 see above for more possible causes of this
 (minor/rare issue)

 Didn’t account that own controls were
not received by server (in time)
 server: “actually, back them, you didn’t jump”
 authoritative server – server defines the truth,

(even when the client is in a better position to know)
 (minor/rare issue)

 Didn’t account for other players’ controls
 (the biggest issue)

 Note: none of the above breaks the game (hopefully)
 it just causes minor / temporary glitches (maybe)

Client-Side Prediction:
optimizations 1/2

 reduce snapshots size
(==> to increase packet frequency)
 partial snapshots: refresh more often the parts

which are most likely to be predicted wrong /
or which changed

 drastic space reductions!
 but make sure that every part is eventually refreshed

 reduce correction computation
(==> so to make corrections quicker)
 partial physic steps:

update only the parts affected by the error
 use bigger dt (fewer steps to get to present)

57

58

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 30

Client-Side Prediction:
optimizations 2/2

 tentatively predict also unknown data
(==> so to reduce correction frequency)
 e.g. also predict other player’s controls
 easiest prediction: players do what they did last frame

 trigger correction only when status differ enough
(==> so to reduce correction frequency)
 e.g. when any spatial position difference > epsilon
 tolerate small discrepancies
 (warning: discrepancies tend to explode exponentially with

virtual time – because Chaos)

Client-Side Prediction:
notes

 A snapshot = includes physical data
 (not just for the 3D rendering, also to update physics)
 can be small, when optimized!

  No latency: immediately react to local input
 client proceeds right away with next frame
 when prediction is correct: seamless illusion
 otherwise: (minor?) glitches

  Determinism: not assumed
  Cheating: not easy (server is authoritative)

59

60

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 31

Summary : rules of thumb

 How to choose the network layout
 peer-to-peer :

  reduced latency
  quadratic number of packages

(with number of players)

 client-server :
  doubled latency
  linear number of packages

(with number of players)
 REQUIRED, for any solution with authoritative server
 REQUIRED, for num players >> 4-6

Summary : rules of thumb

 How to choose the network paradigm
 Deterministic Lockstep, if

 determinism can be assumed
 few players (up to 4-5)
 fast + reliable connection (e.g., LAN)

 Game-status Snapshots, if
 game status not overly complex
 a little latency can be tolerated

 Client-side evolution, if
 preventing cheating not important

 Client-side prediction + server correction, if
 game status not overly complex

or, slow paced game

RTS
most common
option !

FPS
most common
option !

61

62

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 32

Summary:
classes of solutions

 Who computes game evolution? (incl. physics)
 deterministic-lockstep : clients

 there may be no server at all: peer-to-peer
 independent computation, same result

 game-status snapshots : server
 clients are just visualizers
 maybe with interpolation / extrapolation

 (distributed physics : both clients and server)
 clients in charge for own agent(s)
 server in charge for env. / NPCs

 client-side predictions : both clients and server
 clients “predict” (just for local visualization purposes)
 server “corrects” (it has the last word!)

Cloud-gaming with video-streaming
(aka game-on-demand)

1

Client A

Client B

2

2

1

Game
Server

physics rendering

AI
sound
rendering

63

64

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 33

Cloud-gaming with video-streaming

 Client:
 connected: to server only
 captures + sends input
 receives video + audio
 decompresses video

 Server
 connected: to all players
 computes everything

(for each player!)
 compresses video + audio

video-stream
decompression

physics
(+particle fxs)

rendering (+anim)

sound rendering
AI

input collection

video-stream compression

Cloud-gaming with video-streaming
(aka game-on-demand)

 Compared to game snapshots technique…
 Server now does everything
 3D Physics + AI (same as with Game-Status snapshots)
 3D Rendering (“remote” rendering)

(including animations, particle effects…)
 3D Sound rendering
 Compresses and send 2D video

 Client does almost nothing
 Collects and sends inputs (controls)
 Receives and decompresses 2D video

×N times!
(once for
each player)

65

66

3D Video Games
12: Networked 3D Games

2022-05-26

Marco Tarini
Università degli studi di Milano 34

Cloud-gaming with video-streaming
(aka game-on-demand)

 Advantages: client is thin
 client does almost nothing
 client needs nothing (no asset, no storage)
 needed capabilities are limited (pads, cellphones ok)

 Challenges:
 Demanding in terms of bandwidth (high-res video + audio)
 Demanding in terms of server workload
 Latency!!! Impossible to reduce or to hide (by prediction),

plus compression by server,
plus decompression by client

 Video resolution, FPS: now become problematic

Luckily, video-on-demand
technologies can be reused

Cloud-gaming
(aka gaming-on-demand)

 A heavily invested-on,
fast-growing
approach to
3D game networking

 Latency = maybe 80-120 ms
 Is this acceptable?

 Bandwidth = maybe 5-50 mbits/s
 Will it become

an established platform
for 3D games?

(Google)

(Microsoft)

(nVidia)

(Sony)

67

68

