
3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 1

3D VideoGames - UniMi

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

3

4

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 2

Suggested reading

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 See prev. lecture for the list

5

6

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 3

Point, Vectors, Versors
represents: example: imagine it as…

Point
A position

A location

Where a character is

The center of a sphere
a small
floating dot :-D

Vector

A displacement

The difference
between 2 points.

The vector that
connects them.

The velocity of
a thrown knife

The gravity acceleration

How to reach the head of
a character from its neck

a small
arrow :-D
(length is
relevant)

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized

vector

A direction

A facing

The view direction of a
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

the same :-D
(its length is
irrelevant)

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle

7

8

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 4

Points, Vectors, Versors
…in a character model

Examples of…
 points:

 the pos of the navel
 the pos of lewer-left tip of the hood

 vectors:
 the vector connecting the L foot

to the R foot
 the vector from the hand

to the tip of the lance

 versors:
 the gaze direction
 the facing of the shield

Examples of…
 points:

 points of contact
between finger-spinner

 vectors:
 linear velocities

of these four points

 versors:
 rotation axis

(direction of)

Points, Vectors, Versors
…in a spinner

9

12

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 5

Points, Vectors, Versors
…in this screenshot

SUN

gg

Stuff = Points + Vectors + Versors

viewDir

upVec

viewPos

Description of the camera

14

15

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 6

Stuff = Points + Vectors + Versors

dir

pos
dir

pos

description of
a (directional) sound emitter

description of
a (directional) microphone

Stuff = Points + Vectors + Versors

dir
pos

description of a spotlight

16

17

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 7

Points, Vectors, Versors:
Internal representation

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

Points, Vectors, Versors:
Internal representation

 n-tuple of scalar values (n is the dimension)
 with n = 3 (rarely, 2 or 4)
 they are the Cartesian coordinates of the point/vector

 e.g.: or:

 note: the same structure is often used
for points, vectors, and versors

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

18

19

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 8

Points, Vectors, Versors:
Internal representation

 same class for points, vectors, and versors
 this is done in many libs & languages, e.g.:

 and also: GLSL, HLSL, GLM, Eigen, VcgLib , three.js, …

class Vector3
https://docs.unity3d.com/ScriptReference/Vector3.html

class FVector
http://api.unrealengine.com/INT/API/Runtime/Core/Math/FVector/

vec3 Vector3d Point3d

shader languages C++ libraries

Vector3

JavaScript library

Caveat (about coding):
one type, multiple semantics

 Libraries/engines/languages can opt to use
the same data type for 3D points, 3D vectors, 3D versors,
(plus, sometimes: colors, and more)
 alternatively, a library can use different types, e.g. Vector, Point, Versor

 Still, they should not be considered the same thing
 that’s nothing new:

likewise, we use the same scalar data types (“float”, “doubles”)
with widely different semantics (e.g. “weight”, “volume”, “temperature”…).

 It is up to the coder to operate on them accordingly
 e.g.: not ok to sum a temperature with a surface area
 e.g.: it’s ok to divide a weight by a volume (and get a specific weight)

 which operations do make sense on points, vectors, versors?
 that is, what is their algebra ?

20

21

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 9

The algebra of
points, vectors, versors (and scalars)

 make sure you understand each of operation in 3 different ways:

 intuitive / spatial: what does it do conceptually / visually

 algebraic / code: how to compute the result, starting from
(1) the coordinates of the operand(s)
(2) and, additionally, (for products)

the angle between the two operands, and their the lengths

 syntactic: how to write them down
(1) on paper (mathematical notation)
(2) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

⚙
⚙

✎

The algebra of
points, vectors, versors (and scalars)

 also, familiarize with the way the operations behave, i.e. rules such as

(1) commutativity? associativity? (of each operation)
(2) distributivity? (between pairs of operations)
(3) inverse operation? identity element? absorbing element?

23

24

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 10

Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition:
point + vector = point

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar = vector)
 therefore: interpolation

mix(𝑣଴ , 𝑣ଵ, 𝑡) = 1 − 𝑡 𝑣଴ + 𝑡 𝑣ଵ

 therefore: opposite (flip verse)
(how to: multiply by – 1)

 therefore: difference
(vector – vector = vector)

26

27

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 11

Point and vector algebra
(summary 3/7)

 Norm (for vectors)
 aka length / magnitude /

Euclidean norm / 2-norm
 distance between points:

length of vector (a – b) = distance between a and b
 Rules: triangle inequality:

Point and vector algebra
(summary 4/7)

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by (1.0 / length)

28

29

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 12

Point and vector algebra
(summary 5/7)

α

v

w

 Dot product (or inner product)

Point and vector algebra
(summary 5/7)

 Dot product (or inner product)
 Output: a scalar
 Alternative notations:

୘

Section 2.2

See…

30

31

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 13

Point and vector algebra
(summary 5/7)

 Dot product, useful to:
 dot is zero: vectors are orthogobnal

(works between vectors, and/or versors)
 positive dot: acute angle

negative dot: obtuse angle
(works between vectors, and/or versors)

 versor dot vector: project vector along axis
 versor dot versor: cosine of angle
 versor dot versor: a similarity measure (in -1 +1)
 any vector dot itself: its squared length

Point and vector algebra
(summary 6/7)

 Interpolate between pairs of <something> :
 mix(point , point , t) → point
 mix(vector , vector , t) → vector
 mix(versor , versor , t) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0 or t > 1 → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

32

33

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 14

Interpolation in general - notes

 Very used in Computer Graphics (e.g., rendering, animation)
 Terminology:

 a x + b y : a linear combination of x and y
 if a+b=1 and a,b ∈[0,1] : a (linear) interpolation of x and y
 if a+b=1 but a,b ∉[0,1] : a (linear) extrapolation of x and y
 a , b : the used weights
 a + b = 1 : weights are a partition of unity

 Generalizes to > 2 objects (a x + b y + c z)
 When interpolating 2 objects, we can just give one weight t.

 The other is given by difference. a = t, b = 1-t

 General concept! All sorts of objects can be interpolated
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

which you may also want to write as:
 1 − 𝑡 𝐩଴ + 𝑡 𝐩ଵ

Scaling… a point ??

Only legal
operations

with an easily
defined

geometric
meaning

(to-do: check)

Linear
interpolation

But easily
generalizes to > 2

Summing… two points ??

We usually don’t need any such operation.
But it’s equivalent, mathematically.

34

35

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 15

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

 …two versors 𝐝଴ and 𝐝ଵ :
 1 − 𝑡 𝐝଴ + 𝑡 𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)…

Linear
interpolation

But easily
generalizes to > 2

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝଴ , 𝐝ଵ similar OR t close to ½

 Is it worth the extra
computation cost? 🤔

𝐝 = slerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ α ⅓α
𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

36

37

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 16

The formulas

 LERP + normalization:

 1 − 𝑡 𝐝𝟎 + 𝑡 𝐝ଵ

then re-normalize

 or SLERP:

sin 1 − 𝑡 α

sin(α)
𝐝଴ +

sin 𝑡 α

sin(α)
𝐝ଵ

aka “NLERP”

angle
between
d0 and d1

SLERP: notes

 Applicable to any versor (unit vector)
including 2D, 3D, and quaternions (see later)

 SLERP can even be used on general vectors:
 Compute magnitudes of vectors
 Compute directions of vectors

(divide by magnitude, i.e., normalize)
 new direction = SLERP of the directions (unit vectors)
 new magnitude = LERP of the magnitudes (scalars)
 multiply new dir with new mag to get the final result

38

39

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 17

Point and vector algebra
(summary 7/7)

 Cross product, useful to:
 find orthogonal vectors
 therefore: construct orthonormal basis
 collinearity test (if colinear then res == (0,0,0))
 find (double) area of a triangle (in 3D)
 find normal of a triangle in 3D (remember to renormalize it)
 norm of (versor cross versor): module of sin of angle
 analogue in 2D: 2D vector “cross” 2D vector = scalar

(how to: extend with Z=0, get Z of result)
 2D versor × 2D versor: (signed) sin of angle

Products and angles

α

v

w

40

41

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 18

3D videogames

Points, Vectors, Versors:
mini task and exercises
Part I

Marco Tarini

60°

30°

Points, Vectors, Versors:
mini problems
 The following are examples of spatial problem problems that

need to be solved in 3D games
 They can be solved simply using point/vector/versor algebra
 Many game engines libraries implement functions for many of them

 General schema for finding a solution:
 identify input and output (and their types)
 write the equations driven by your intuitive/spatial understanding of

the operations
 identify the unknowns
 manipulate the equations according to the rules
 extract the unknowns
 everything is ready to code it!

For some of them, the solution
will be given in full here.
In other, only a trace of the
solution is given

55

56

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 19

Point to point distance
(trivial)

“When the player in position p is closer than 𝑘 to a
powerup in pos q, then the powerup is collected”
 Data: p, q points, 𝑘 scalar
 Test: p − q < 𝑘

 Optimize vers: p − q ଶ < 𝑘ଶ

 Pseudo-code example:
vec3 p,q;
scalar k;
if (dot(p-q,p-q) < k*k) then /*collect*/

Ray-Plane intersection Ver0

“I shoot a laser from p in direction d෠ toward a plane
which contains points 𝑞 and has normal nො .
Which point q do I hit?”
 Trace:
 Define q as a point on the laser (see Ray-Sphere inters.)
 Define q as a point on the plane

(hint: the vector connecting it to any other point on the
plane is orthogonal to n)

 Combine the two equations into one
 Extract the only incognita

58

59

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 20

Projection of a point on a line

“Consider a line passing through points 𝐚 and 𝐛 and a
point 𝐜 outside it: which 𝐜′ on the line is closer to 𝐜”?

i.e., find the “projection” 𝐜′ of 𝐜 on the line

𝐚

𝐛
𝐜

𝐜′

Projection of a point on a segment

“Which 𝐜′ point on a segment connecting
point 𝐚 and 𝐛 is closer to a third point 𝐜”?

𝐚

𝐛

𝐜

𝐜′

𝐚

𝐜′ = 𝐛

𝐜

case 1 case 2

60

61

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 21

Line-Line “intersection”

“Given two 3D lines, find the two points on both
lines that are as close as possible to each other”

(they are the same point, if the lines intersect!)

 Input: a point on line “A” p୅ and its direction d෠୅

a point on line “B” p୆ and its direction d෠୆

 Output: two points q୅ and q୆

Ray-Plane intersection Ver1

“I shoot a laser from p in direction d෠ toward a plane
which contains points a b c. Which point q do I hit?”
 Hypotheses: a b c are not colinear (not on a line)
 Trace:
 Find vector n orthogonal to plane, use cross product

(question for later: are magnitude and verse important?)

 Define q as a point on the laser (see Ray-Sphere inters.)
 Define q as a point on the plane (hint: the vector

connecting it to any other point on the plane is
orthogonal to n)

 Combine the two equations into one
 Extract the only incognita

62

63

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 22

Sphere-sphere intersection
(trivial)

“Given two spheres with center in c଴ and cଵ and
radii 𝑟଴ and 𝑟ଵ: do they intersect? Do they touch?”
 Hint:
 remember that working with squared norms

is more efficient (and more accurate) than working
with vector norms

The missile and the wall
(trivial)

“A missile is moving at
constant velocity v
(meter per sec), in the
general proximity of a large
(infinite)
wall with normal nො .
After some time 𝑡 (sec),
how much closer to
(or farther from)
the wall is it?”

nො

v

64

65

3D Video Games
01: Point and Vector Algebra (part I)

2023-03-02

Marco Tarini
Unviersità degli studi di Milano 23

Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: nො
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

nො ȉ 𝐪 − 𝐩 =
nො ȉ 𝐪 − 𝑛 ȉ 𝐩 =
nො ȉ 𝐪 + 𝑘 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
nො

a 4D vector representing the plane:
a more convenient representation for a plane

𝑘 = −𝑛 ȉ 𝐩
(minus distance of plane from origin)

nො

nො

nො

Vision cones

“A guard has eyes in position q
and looks in direction d෠ .
Does it spot a fly in
position p , if his cone
of vision is 60° wide?”
 Hypotheses: no occlusions

 Trace:
 For angles 𝛼, 𝛽 in 0..90°: 𝛼 < 𝛽 ↔ cos 𝛼 > cos 𝛽

 Find cosine of angle between view direction and the vector
connecting q to p

 Determine if this cosine is > cos 60°/2

d෠
60°

30°

66

67

