3D Video Games

02: Point and Vector Algebra (part II)

```
Course Plan
lec. 1: Introduction
lec. 2: Mathematics for 3D Games - ○○○
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
```

42

Point and vector algebra

Products: additional reading
Products between vectors / between versors

- Dot product (or inner product)
- Output: a scalar

- Cross product (or vector product)
- Output: a vector (note: not a versor)

44

Note: Generalization to

N - Dimensions

- Everything seen in this lecture generalizes in 2D (for 2D games), or even in $\mathrm{N}>3$ dimensions
- Exception: the cross product is only defined in 3D
- But in 2D, the problem of finding a vector/versor orthogonal to one (just one!) given vector/versor is easy: "swap coordinates, flip one* sign" (x, y) orthogonal to $(-y, x)$, and also to ($y,-x)$
*: which coordinate you flip determines if you rotate 90° clockwise or counterclockwise: try!

46

recap: Reference Frame (or Space)

1 origin (point)

- Any vector v :
one linear comb. of the axes
- Any point p:
origin + one linear
comb. of axes

Recap: Orthonormal Frames Or Cartesian Frame

- Axes are unit vectors and reciprocally orthogonal

Recap: Handed-ness of a
(Cartesian) frame

- They can be right- or left-handed

$x \times y=z$

$x \times y=z$ regardless!

Use the same hand to imagine a cross product

02: Point and Vector Algebra (part II)

71

Decompose a vector
 into components

- Given a vector \vec{v} and a plane normal \hat{n}, split \vec{v} in the vector sum
$\vec{v}=\vec{v}_{n}+\vec{v}_{p}$ with
- \vec{v}_{n} orthogonal to the plane

$$
\text { (= parallel to } \widehat{n} \text {) }
$$

- \vec{v}_{p} parallel to the plane
(= orthogonal to \hat{n})

- A solution in 3 steps:
(1) $s_{n} \leftarrow \vec{v} \cdot \hat{n} \quad s_{n}$ a (signed) scalar: the extension of \vec{v} along \hat{n}
(2) $\vec{v}_{n} \leftarrow s_{n} \hat{n} \quad$ component of \vec{v} along \hat{n}
(3) $\vec{v}_{p} \leftarrow \vec{v}-\vec{v}_{n}$

72

3D Video Games

Plane-plane intersection

"Given two 3D planes, find the line they share"

- Input: a point on plane " A " \mathbf{p}_{A} and its normal $\hat{\mathrm{n}}_{\mathrm{A}}$ a point on plane " B " \mathbf{p}_{B} and its normal $\hat{\mathrm{n}}_{\mathrm{B}}$
- Output:
a point on the line \mathbf{q} and the line direction \hat{d}

Ray-sphere intersection

"I shoot a laser from p to direction d . Do I hit a sphere in position q of radius r ? Where?"

- Data: p, q points, r scalar, $\widehat{\mathrm{d}}$ versor
- Trace:
- Hit-point is s on laser ray:
$\mathrm{s}=\mathrm{p}+k \hat{\mathrm{~d}}$, for some unknown scalar $k \geq 0$
- Hit-point is s on sphere:
$\|q-\mathrm{s}\|=r \quad \leftrightarrow \quad(\mathrm{q}-\mathrm{s}) \cdot(\mathrm{q}-\mathrm{s})=r^{2}$
- Combine the two equations (substitute s in second), solve for k (it's a $2^{\text {nd }}$ degree equation), test that k exists and that it is >0)

Problem: surface normal

(trivial)

"I have three points on a, b, c on a plane: find the normal \hat{n} of this plane (a versor)"

- Trace:
find any two
different vectors on the plane
...
- Question: what determines the direction
 of \hat{n} ?

76

Problem: triangle area

 (trivial)"I have three points on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in space.
Find the area of the triangle connecting them"

- Hint:
it's half the area
of a parallelogram

Vector orthogonalization

"Find a versor \hat{u} ' that is ortogonal to a given \hat{n} such that it is as similar as possible to a given versor $\hat{u}^{\prime \prime}$

Solution: $\quad \hat{u}^{\prime}=\hat{\mathrm{n}} \times \hat{\mathrm{u}} \times \hat{\mathrm{n}} \quad$, then renormalize it.
Coding examples, in different languages:

```
vec3 n,u;
u = cross( cross( n , u ) , n );
u = normalize( u );
FVector n,u;
                                    C++, with UE
u = FVector::CrossProduct( FVector::CrossProduct(n,u),n );
u.Normalize();
Vector3 n,u;
                                    C#, with Unity
u = Vector3.Cross( Vector3.Cross( n , u ) , n );
u = u.normalized;
```


Orthonormal base completion

"I have only two axes \hat{x} and \hat{y} of an orthonormal bases, how do I find the third vector $\hat{\mathrm{z}}$?"

- Data: \hat{x}, \hat{y} versors
- Hypotheses: \hat{x} and \hat{y} are already orthogonal
- Variant: \hat{y} is not exactly orthogonal to \hat{x}, but I want to change it the least to make it orthogonal ($\widehat{\mathrm{x}}$ is to be kept constant)
(see previous problem)

3D Video Games

02: Point and Vector Algebra (part II)

Shooting a walking target
(with a finite speed bullet) $1 / 2$
"I shoot a bullet from p with velocity \vec{v}. At which time the bullet will be the closest to a target currently in position q and moving with velocity $\overrightarrow{\mathrm{w}}$?
Where will bullet and target be, at that point?"

- Data: p, q points, \vec{v} and \vec{w} vectors
- Hypothesis: nothing accelerates (everything keeps moving at a constant speed)

80

Shooting a walking target (with a finite speed bullet) 2/2

Trace

- Position of bullet at time $t: \mathrm{p}+t \overrightarrow{\mathrm{v}}$
- Position of target at time $t: \mathrm{q}+t \overrightarrow{\mathrm{w}}$
- Squared distance between the two at time t :

$$
\begin{array}{r}
\|(\mathrm{p}+t \overrightarrow{\mathrm{v}})-(\mathrm{q}+t \overrightarrow{\mathrm{w}})\|^{2} \\
= \\
\|(\mathrm{p}-\mathrm{q})+t(\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}})\|^{2}
\end{array}
$$

- Work on formulas (remember that $\|\overrightarrow{\mathrm{v}}\|^{2}=\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{v}}$) find derivative for $\mathrm{d} t$, equate derivative to 0 , extract t

