
3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph ◗

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Rotations as 3x3 matrices

 Rotation =
the 3x3 submatrix of a 4x4 «pure» rotation
affine matrix

Note: by combining with translations, we can obtain rotations
around any point

0
0
0
10 0 0

R

No translation.
i.e: the origin stays fixed.
i.e.: the rotation axis
passes through the origin

16

17

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 2

Rotations as 3x3 matries

 Wasteful in RAM (9 scalars, versus a minimum of 3)

 Easy to apply (matrix-vector prod: 9 mults)

 Relat. easy to compose (matrix-matrix prod: 27 x mult)

 Interpolate: problematic:

R0 R1 M
NOT a rotation
(NOT orthonormal)

why?

Rotations as 3x3 matrices (9 scalars):
compositions

 Multiplying matrices composites the rotation
 remember: neither matrix-matrix product,

nor composition of 3D rotations, is commutative!

 e.g.: RTOT = R0 · R1

 rotate as R1 followed by R0

 with R0 · R1 rotation matrices
 i.e. orthonormal matrices with det = 1

 RTOT is a rotation matrix too, in theory
 in practice, approximation errors can break that
 especially after long sequences of compositions.

18

19

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 3

Local
Space

World
Space

Transform

forward
(0,0,1)

right
(1,0,0)

up
(0,1,0)

origin

Z

X

Y

ZX Y origin

t
ssR

rotate translate scale

Rotations as 3x3 matrices (9 scalars)

A useful property

 its three columns encode
the three versors representing
the X , Y , Z axis of the local space
expressed in global space
 i.e. the world-space versors

representing local right, upward, forward (in Unity)
or local forward, right, upward (in Unreal engine)

21

22

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 4

Rotations as 3x3 matries:
Inversion

 For rotation matrices:
to transpose = to invert

R

xො yො zො

RT

xො
yො

zො

=
1 0 0

0 1 0

0 0 1

= I

xො ȉ xො = xො ଶ

Just swap three
pairs of elements!

yො ȉ zො

Rotations as 3x3 matrices (9 scalars)

A useful property

 its three rows encode
the three versors representing
the X , Y , Z axis of the global space
expressed in local space
 i.e. the three local-space versors

representing the
global eastward, upward, northward
directions (for example)

The columns of
its transposed

23

24

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 5

Recap: a score sheet :-)

3x3 Matrix
★☆☆☆☆Space efficient?

(in RAM, GPU, storage…)

★★★★☆Apply
(to points/vectors)

★★★★★Invert
(produce inverse)

★★☆☆☆Composite
(with another rotation)

★☆☆☆☆Interpolate
(with another rotation)

★☆☆☆☆Intuitive?
(e.g., to manually set)

Useful to extract local axes.Notes…

9 products
(3 dot products)

just transpose
(three swaps)

9 scalars

Matrix multipl
(9 dot products)
Numerical errors

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

Introduces
shear/scale

Impossible to
manually set

Representations of
3D rotations

3x3 matrices
Euler angles

 the most intuitive way to
express a rotation

e.g., well understood by digital artists!

25

26

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 6

Rotations as Euler angles (3 scalars)

 Any 3D rotation can be expressed
as:
 a rotation around X axis (by α degrees), followed by:

 a rotation around Y axis (by β degrees), followed by :

 a rotation around Z axis (by γ degrees):

 Angles α β γ :
“Euler angles” of a specific rotation
 therefore: the “coordinates”

of that rotation

this order (X-Y-Z)
is chosen arbitrary
but once
and for all!
(in a given game
engine / lib / etc)

Rotations as Euler angles (3 scalars)

 In nautical / aeronautical language,
the three angles have names:

roll
(rollio)

pitch
(beccheggio)

yaw
(imbardata)

27

28

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 7

Rotations as Euler angles (3 scalars)

 A physical
implementation:
“three axes
globe”

Rotations as Euler angles (3 scalars)

 Is it 1:1 ?
 1 rotation  1 euler angle triplet ?

 Almost
 assuming angles are properly

bounded (exercise: how?)

 Ugly exception:
“GIMBAL LOCK”
 when 1st rotation

makes the axes of the next
two axes coincide

 this cannot be avoided,
no matter how axes are chosen

29

30

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 8

Rotations as Euler angles (3 scalars)

 Conciseness: perfect! 3 scalars for 3 DOF
 Application : a bit work-intensive
 three rotations in succession

 Interpolation : you can do that…
 just interpolate the three angles
 (remember to always “pick the shortest path”

whenever interpolating angles: that is,
must take in account the α ≈ α + 360 k equivalence)

…but results won’t always be nice !
 Composite / invert: not easy nor immediate…

exercise: why just summing / flipping
the three angles won’t work?

Comparing representations (so far)
Euler Angles3x3 Matrix

★★★★★★☆☆☆☆Space efficient?
(in RAM, GPU, storage…)

★☆☆☆☆★★★★☆Apply
(to points/vectors)

★☆☆☆☆★★★★★Invert
(produce inverse)

★☆☆☆☆★★☆☆☆Composite
(with another rotation)

★☆☆☆☆★☆☆☆☆Interpolate
(with another rotation)

★★★★★★☆☆☆☆Intuitive?
(e.g. to manually set)

Free extra shear + scale.
Useful to extract local axes.Notes…

easy to do, unintuitive result
(⚠ shortest-path required!)

requires trigonometry
sin/cos

9 products
(3 dot products)

just
transpose

9 scalars 3 scalars
(even as small int!)

roll
yaw
pitch

Matrix multipl
(9 dots)
Numerical errors

GIMBAL
LOCK

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

Introduces
shear/scale

⚠

31

32

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 9

Representations of
3D rotations

3x3 matrices
Euler Angles
Axis + angle

 Most common way in physics
(and game physics)

Rotations as axis & angle

 Any rotation can be expressed as:
 one rotation by some angle

around some axis

 Angle: a scalar
 Axis: a versor (3 scalars)

 note: the axis is considered to pass around the origin.
For the more general case, combine with translations.

appropriately
chosen

34

35

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 10

Rotations as axis & angle

 Compactness: good, 4 scalars
 Just one more than bare minimum

 Ease of application: not too good 
 Ways include: switch to 3x3 matrix (exercise: how to)
 Switch to a quaternion: see later
 “Rodrigues' rotation formula” (look it up)
 Note they all require trigonometric function (sin, cos)

 Invert: super easy / quick
 just flip the angle sign or the axis vector
 question: what if both?

answer: Rotation is inverted twice:
it’s back to the same rotation again! 🤔

Rotations as axis & angle:
equivalent representations

 Therefore: 𝑎௫ , 𝑎௬ , 𝑎௭ , 𝛼

and −𝑎௫, −𝑎௬, −𝑎௭ , −𝛼

represent the same rotation
 Any rotation has two equivalent representations

in this format
 except the identity, which has infinitely many:

angle 𝛼 = 0, with any axis aො = (𝑎௫ , 𝑎௬ , 𝑎௭)

 This is always a bit inconvenient!
 Complicates interpolation (“shortest path” necessary)
 Complicates testing for equality/similarity, etc.

axis angle

36

37

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 11

Rotations as axis & angle

 Compositing rotations:
not at all immediate or easy to do 

 Interpolating rotations: very good!
 Just interpolate axis and angle separately
 Some caveat:

 1) shortest path for axes: first, flip either rotation (both its axis & angle)
when this makes the two axes closer (how to test?)

 2) shortest path for angles: as usual, angles must then be
interpolated… «modulo 360°»,

 3) interpolate between axes requires SLERP or NLERP
(when interpolating versors)

 4) beware degenerate cases (opposite axes);
point 1 avoids this

 best results!
Usually produces the “expected” intermediate rotation

Rotations as axis and angle, variant:
as axis angle

 axis: aො (versor, aො = 1)

 angle: α (scalar)

 can be represented as one vector a (3 scalars)
a = α aො
 angle α = a

 axis aො = a / α
 note: when α = 0, the axis is lost… it’s ok, we don’t need it!

 more compact, but fairly equivalent
 actually, better: we now have only 1 representation per rotation (why?)

… including the identity (why?)

Sometimes called
«pseudo-vector»
because it flips sign
if the world is mirrored

38

39

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 12

Representations of
3D rotations

3x3 matrices
Euler angles
Axis + Angle
Quaternions

A flashback:
Complex Numbers in a nutshell 1/3

 It all starts with a «fantasy» assumption, which is:
there is an imaginary number i
such that 𝒊ଶ = −1

 And for any other purpose, 𝑖 behaves just like
a (non-zero) Real number

 Consequences:
 We now have number of the form 𝑎 + 𝑏 𝑖,

with 𝑎, 𝑏 ∈ ℝ , called complex numbers (the set is ℂ)
 The algebra of complex numbers (how to sum, multiply,

invert them…) is simply determined by the «fantasy»
assumption above

real part imaginary part

40

41

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 13

A flashback:
Complex Numbers in a nutshell 2/3

 For example, sum:
𝑎 + 𝑏 𝑖 + 𝑐 + 𝑑 𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖

 For example, product (remembering 𝑖ଶ = −1):
𝑎 + 𝑏 𝑖 ∗ 𝑐 + 𝑑 𝑖 = 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝑖

 For example, inverse (check):

𝑎 + 𝑏 𝑖 ିଵ =
𝑎 − 𝑏 𝑖

𝑎ଶ + 𝑏ଶ

 What is interesting to us is the
geometric interpretation of these objects & operations

real part imaginary part

the «coniugate»
of (a + b i)

the squared
«magnitude»
of (a + b i)

A flashback:
Complex Numbers in a nutshell 3/3

 Geometric interpretation:
 𝑎 + 𝑏 𝑖 represents the vector/point 𝑎, 𝑏

 Complex sum = vector sum
 Complex conjugate = mirroring with the Real axis (horizontal)
 Product = add angles (with Real axis), multiply magnitudes

 Therefore,
 product with a unitary (magnitude = 1) complex number

is a 2D rotation around origin
 A complex number r ∈ ℂ with r = 1 represents a 2D rot;

multiply a vector 𝑥 + 𝑦 𝑖 with r means to rotate it

Wouldn’t it be nice to have the same for 3D rotations?

42

43

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 14

Quaternions
 New «fantasy»

assumption:
there are three
different “imaginary”
numbers i , j , k such that:
 for any other purpose,

𝑖, 𝑗, 𝑘 behave like real numbers

 Consequences:
 We now have number of the form 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑,

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ , called Quaternions (their set is ℍ)
 The algebra of quaternions (how to sum, multiply, invert

them…) is simply determined by the «fantasy» assumption
 Again, what is interesting to us is the geometric interpretation…

real partimaginary parts

as a
table:

𝑖ଶ = 𝑘ଶ = 𝑗ଶ = −1
𝑖𝑗 = 𝑘 , 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖 , 𝑗𝑘 = −𝑖
𝑘𝑖 = 𝑗 , 𝑘𝑗 = −𝑗

𝑖 𝑗

𝑘

kji×

-j+k-1i

+i-1-kj

-1-i+jk

Quaternions: how to write them
(three equivalent ways)

 Algebraic form: 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑

 often, omitting the zeros, e.g. 𝑖 + 2 𝑘 is a quaternion

 As vectors of ℝସ : (𝑎 , 𝑏 , 𝑐 , 𝑑)

 As vector & scalar pair: (𝑣⃗ , 𝑑)

 Conjugate of a quaternion:
invert the sign of the imaginary part

1𝑎1

𝑏
𝑐

imaginary part,

a vector

real part,
a scalar

45

46

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 15

Quaternions: algebra

 Sum, Scale, Interpolate , etc.:
 Trivial

 Magnitude

 q = 𝑎ଶ + 𝑏ଶ + 𝑐ଶ + 𝑑ଶ

q ଶ = 𝑎ଶ + 𝑏ଶ + 𝑐ଶ + 𝑑ଶ

 «unitary» if it’s 1

q ∈ ℍ q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑

consider
them as
4D vectors

Quaternions: algebra

 Product: just apply «fantasy» assumptions
 Observe: product is not commutative (nor anticommut.)
 (see next 3 slides for the math)

 «Conjugate»:
 like for complex numbers: qത = −𝑎𝑖 − 𝑏𝑗 − 𝑐𝑘 + 𝑑

 Inverse: (like for complex numbers) qିଵ = qത / q ଶ

 For unitary quat, it’s just the conjugate

q ∈ ℍ q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑

Flip the imaginary parts

47

48

3D Video Games
03: 3D Rotations. Part 2

2023-03-20

Marco Tarini
Unviersità degli studi di Milano 16

Quaternions:
geometric interpretations

 A quaternion q = (v , 𝑑) represents :
 the 3D point or vector v , when 𝑑 = 0

 a 3D rotation, when q is unit, i.e. q ଶ = v ଶ + 𝑑ଶ = 1
 neither, otherwise

 If q is a rotation and p is a point (q, p ∈ ℍ) then…
 q ⋅ p ⋅ qത is the rotated point / vector
 qത is the inverse rotation

 (so, qത ⋅ p ⋅ q is point p rotated… in the other direction)
 q଴ ⋅ qଵ is the composited rotation (first qଵ then q଴)

p

Next lecture(s)

 Quaternions to-do list
 Understand which rotation is encoded by a quaternion
 Investigate quaternion multiplication
 Investigate cumulation, inversion, and interpolation

of rotations as quaternions (including shortest path)
 Examples of rotation as quaternions and their application

 Rotations exercises:
 “Find the rotation which…”
 “Convert a rotation representation into another”

 Roto-translation representation
 Beyond just (rotation , translation) pairs

49

50

