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Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph ◗

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Rotations as 3x3 matrices

 Rotation = 
the 3x3 submatrix of a 4x4 «pure» rotation
affine matrix

Note: by combining with translations, we can obtain rotations 
around any point

0
0
0
10  0  0

R

No translation.
i.e: the origin stays fixed.
i.e.: the rotation axis 
passes through the origin
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Rotations as 3x3 matries

 Wasteful in RAM (9 scalars, versus a minimum of 3)

 Easy to apply (matrix-vector prod: 9 mults)

 Relat. easy to compose (matrix-matrix prod: 27 x mult)

 Interpolate: problematic:

R0 R1 M
NOT a rotation
(NOT orthonormal)

why?

Rotations as 3x3 matrices (9 scalars):
compositions

 Multiplying matrices composites the rotation
 remember: neither matrix-matrix product,

nor composition of 3D rotations, is commutative!

 e.g.: RTOT = R0 · R1

 rotate as R1 followed by R0

 with R0 · R1 rotation matrices
 i.e. orthonormal matrices with det = 1

 RTOT  is a rotation matrix too, in theory
 in practice, approximation errors can break that
 especially after long sequences of compositions.
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Local 
Space

World 
Space

Transform

forward
(0,0,1)

right 
(1,0,0)

up
(0,1,0)

origin

Z

X

Y

ZX Y origin

t
ssR

rotate translate scale

Rotations as 3x3 matrices (9 scalars)

A useful property

 its three columns encode 
the three versors representing 
the X , Y , Z axis of the local space
expressed in global space
 i.e. the world-space versors

representing local right, upward, forward (in Unity)
or local forward, right, upward (in Unreal engine) 
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Rotations as 3x3 matries:
Inversion

 For rotation matrices:
to transpose = to invert

R

xො yො zො

RT

xො
yො

zො

=
1 0 0

0 1 0

0 0 1

= I

xො ȉ xො = xො ଶ

Just swap three 
pairs of elements!

yො ȉ zො

Rotations as 3x3 matrices (9 scalars)

A useful property

 its three rows encode 
the three versors representing 
the X , Y , Z axis of the global space
expressed in local space
 i.e. the three local-space versors

representing the 
global eastward, upward, northward
directions (for example)

The columns of 
its transposed
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Recap: a score sheet :-)

3x3 Matrix
★☆☆☆☆Space efficient?

(in RAM, GPU, storage…)

★★★★☆Apply
(to points/vectors)

★★★★★Invert
(produce inverse)

★★☆☆☆Composite 
(with another rotation)

★☆☆☆☆Interpolate
(with another rotation)

★☆☆☆☆Intuitive?
(e.g., to manually  set)

Useful to extract local axes.Notes…

9 products
(3 dot products)

just transpose
(three swaps)

9 scalars

Matrix multipl
(9 dot products)
Numerical errors
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Introduces 
shear/scale

Impossible to
manually set

Representations of 
3D rotations

3x3 matrices
Euler angles

 the most intuitive way to 
express a rotation

e.g., well understood by digital artists!
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Rotations as Euler angles (3 scalars)

 Any 3D rotation can be expressed 
as:
 a rotation around X axis (by α degrees), followed by: 

 a rotation around Y axis (by β degrees), followed by : 

 a rotation around Z axis (by γ degrees): 

 Angles α β γ : 
“Euler angles” of a specific rotation
 therefore: the “coordinates” 

of that rotation

this order (X-Y-Z)
is chosen arbitrary 
but once 
and for all!
(in a given game 
engine / lib / etc)

Rotations as Euler angles (3 scalars)

 In nautical / aeronautical language,
the three angles have names:

roll
( rollio )

pitch
( beccheggio )

yaw
( imbardata )
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Rotations as Euler angles (3 scalars)

 A physical 
implementation:
“three axes
globe”

Rotations as Euler angles (3 scalars)

 Is it 1:1 ?
 1 rotation  1 euler angle triplet ?

 Almost
 assuming angles are properly 

bounded (exercise: how?)

 Ugly exception:
“GIMBAL LOCK”
 when 1st rotation

makes the axes of the next
two axes coincide

 this cannot be avoided,
no matter how axes are chosen
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Rotations as Euler angles (3 scalars)

 Conciseness: perfect! 3 scalars for 3 DOF
 Application : a bit work-intensive
 three rotations in succession

 Interpolation : you can do that…
 just interpolate the three angles
 (remember to always “pick the shortest path”

whenever interpolating angles: that is,
must take in account the α ≈ α + 360 k equivalence)

…but results won’t always be nice !
 Composite  /  invert: not easy nor immediate…

exercise: why just summing / flipping 
the three angles won’t work?

Comparing representations (so far)
Euler Angles3x3 Matrix

★★★★★★☆☆☆☆Space efficient?
(in RAM, GPU, storage…)

★☆☆☆☆★★★★☆Apply
(to points/vectors)

★☆☆☆☆★★★★★Invert
(produce inverse)

★☆☆☆☆★★☆☆☆Composite 
(with another rotation)

★☆☆☆☆★☆☆☆☆Interpolate
(with another rotation)

★★★★★★☆☆☆☆Intuitive?
(e.g. to manually  set)

Free extra shear + scale.
Useful to extract local axes.Notes…

easy to do, unintuitive result
(⚠ shortest-path required!)

requires trigonometry 
sin/cos

9 products
(3 dot products)

just 
transpose

9 scalars 3 scalars
(even as small int!)

roll 
yaw 
pitch

Matrix multipl
(9 dots)
Numerical errors

GIMBAL 
LOCK

E
 f

 f
ic

 i
e

 n
 t

  /
 e

 a
 s

 y
  

  
t 

o

Introduces 
shear/scale

⚠
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Representations of 
3D rotations

3x3 matrices
Euler Angles
Axis + angle

 Most common way in physics
(and game physics)

Rotations as axis & angle

 Any rotation can be expressed as:
 one rotation by some angle 

around some axis

 Angle: a scalar
 Axis: a versor (3 scalars)

 note: the axis is considered to pass around the origin.
For the more general case, combine with translations.

appropriately
chosen
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Rotations as axis & angle

 Compactness: good, 4 scalars
 Just one more than bare minimum

 Ease of application: not too good 
 Ways include: switch to 3x3 matrix (exercise: how to)
 Switch to a  quaternion: see later
 “Rodrigues' rotation formula” (look it up)
 Note they all require trigonometric function (sin, cos)

 Invert: super easy / quick
 just flip the angle sign or the axis vector
 question: what if both?

answer: Rotation is inverted twice: 
it’s back to the same rotation again! 🤔

Rotations as axis & angle:
equivalent representations

 Therefore:   𝑎௫  ,   𝑎௬  ,  𝑎௭  ,  𝛼   

and  −𝑎௫, −𝑎௬, −𝑎௭ , −𝛼  

represent the same rotation
 Any rotation has two equivalent representations

in this format
 except the identity, which has infinitely many:

angle 𝛼 = 0, with any axis  aො =  ( 𝑎௫ , 𝑎௬ , 𝑎௭  )

 This is always a bit inconvenient!
 Complicates interpolation (“shortest path” necessary) 
 Complicates testing for equality/similarity, etc.

axis angle
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Rotations as axis & angle

 Compositing rotations: 
not at all immediate or easy to do 

 Interpolating rotations: very good!
 Just interpolate axis and angle separately
 Some caveat:

 1) shortest path for axes: first, flip either rotation (both its axis & angle)
when this makes the two axes closer (how to test?)

 2) shortest path for angles: as usual, angles must then be  
interpolated… «modulo 360°», 

 3) interpolate between axes requires SLERP or NLERP 
(when interpolating versors)

 4) beware degenerate cases (opposite axes); 
point 1 avoids this

 best results! 
Usually produces the “expected” intermediate rotation

Rotations as axis and angle, variant:
as axis angle

 axis:  aො (versor, aො = 1)

 angle: α (scalar)

 can be represented as one vector a (3 scalars) 
a = α aො
 angle  α  = a

 axis aො = a /  α
 note: when α = 0, the axis is lost… it’s ok, we don’t need it!

 more compact, but fairly equivalent
 actually, better: we now have only 1 representation per rotation (why?)

… including the identity (why?)

Sometimes called
«pseudo-vector»
because it flips sign
if the world is mirrored
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Representations of 
3D rotations

3x3 matrices
Euler angles
Axis + Angle
Quaternions

A flashback: 
Complex Numbers in a nutshell 1/3

 It all starts with a «fantasy» assumption, which is:
there is an imaginary number i 
such that 𝒊ଶ = −1

 And for any other purpose, 𝑖 behaves just like 
a (non-zero) Real number

 Consequences:
 We now have number of the form 𝑎 + 𝑏 𝑖, 

with 𝑎, 𝑏 ∈ ℝ , called complex numbers (the set is ℂ )
 The algebra of complex numbers (how to sum, multiply, 

invert them…) is simply determined by the «fantasy» 
assumption above

real part imaginary part
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A flashback: 
Complex Numbers in a nutshell 2/3

 For example, sum: 
𝑎 + 𝑏 𝑖 + 𝑐 + 𝑑 𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖

 For example, product (remembering 𝑖ଶ = −1 ):
𝑎 + 𝑏 𝑖 ∗ 𝑐 + 𝑑 𝑖 = 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝑖

 For example, inverse (check):

𝑎 + 𝑏 𝑖 ିଵ =
𝑎 − 𝑏 𝑖

𝑎ଶ + 𝑏ଶ

 What is interesting to us is the 
geometric interpretation of these objects & operations

real part imaginary part

the «coniugate»
of (a + b i ) 

the squared
«magnitude»
of (a + b i )

A flashback: 
Complex Numbers in a nutshell 3/3

 Geometric interpretation: 
 𝑎 + 𝑏 𝑖 represents the vector/point  𝑎, 𝑏

 Complex sum = vector sum
 Complex conjugate = mirroring with the Real axis (horizontal)
 Product = add angles (with Real axis), multiply magnitudes

 Therefore, 
 product with a unitary (magnitude = 1) complex number 

is a 2D rotation around origin
 A complex number r ∈ ℂ with r = 1 represents a 2D rot; 

multiply a vector 𝑥 + 𝑦 𝑖 with r means to rotate it

Wouldn’t it be nice to have the same for 3D rotations?
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Quaternions
 New «fantasy» 

assumption: 
there are three  
different “imaginary” 
numbers i , j , k such that:
 for any other purpose,

𝑖, 𝑗, 𝑘 behave like real numbers

 Consequences:
 We now have number of the form 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑, 

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ , called Quaternions (their set is ℍ )
 The algebra of quaternions (how to sum, multiply, invert 

them…) is simply determined by the «fantasy» assumption
 Again, what is interesting to us is the geometric interpretation…

real partimaginary parts

as a 
table:

𝑖ଶ = 𝑘ଶ = 𝑗ଶ = −1
𝑖𝑗 = 𝑘  , 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖  , 𝑗𝑘 = −𝑖 
𝑘𝑖 = 𝑗 ,  𝑘𝑗 = −𝑗

𝑖 𝑗

𝑘

kji×

-j+k-1i

+i-1-kj

-1-i+jk

Quaternions: how to write them
(three equivalent ways)

 Algebraic form: 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑

 often, omitting the zeros, e.g.  𝑖 + 2 𝑘 is a quaternion

 As vectors of ℝସ : ( 𝑎 , 𝑏 , 𝑐 , 𝑑 )

 As vector & scalar pair: ( 𝑣⃗  , 𝑑)

 Conjugate of a quaternion: 
invert the sign of the imaginary part 

 
1𝑎1

𝑏
𝑐

 
imaginary part,

a vector

real part,
a scalar
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Quaternions: algebra

 Sum, Scale, Interpolate , etc.: 
 Trivial

 Magnitude

  q =  𝑎ଶ + 𝑏ଶ + 𝑐ଶ + 𝑑ଶ

q ଶ = 𝑎ଶ + 𝑏ଶ + 𝑐ଶ + 𝑑ଶ

 «unitary» if it’s 1 

q ∈ ℍ                  q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑  

consider
them as
4D vectors

Quaternions: algebra

 Product: just apply «fantasy» assumptions 
 Observe: product is not commutative  (nor anticommut.)
 (see next 3 slides for the math)

 «Conjugate»:  
 like for complex numbers:      qത = −𝑎𝑖 − 𝑏𝑗 − 𝑐𝑘 + 𝑑

 Inverse: (like for complex numbers) qିଵ = qത / q ଶ

 For unitary quat, it’s just the conjugate

q ∈ ℍ                  q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑  

Flip the imaginary parts
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Quaternions: 
geometric interpretations

 A quaternion q =  ( v  , 𝑑 ) represents :
 the 3D point or vector v ,  when  𝑑 = 0

 a 3D rotation, when q is unit, i.e.  q ଶ = v ଶ + 𝑑ଶ = 1
 neither, otherwise

 If q is a rotation and p is a point (q, p ∈ ℍ ) then…
 q ⋅ p ⋅ qത is the rotated point / vector
 qത is the inverse rotation

 (so,  qത ⋅ p ⋅ q is point p rotated… in the other direction)
 q଴ ⋅ qଵ is the composited rotation (first qଵ then q଴ )

p

Next lecture(s)

 Quaternions to-do list
 Understand which rotation is encoded by a quaternion
 Investigate quaternion multiplication
 Investigate cumulation, inversion, and interpolation 

of rotations as quaternions (including shortest path)
 Examples of rotation as quaternions and their application

 Rotations exercises:
 “Find the rotation which…”
 “Convert a rotation representation into another”

 Roto-translation representation
 Beyond just (rotation , translation) pairs
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