
3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 1

3D video games 2022/2023

the Scene Graph

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

2

3

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 2

Recap:
3D Spatial Transforms

 Math functions
 input: point / vector / versor
 output: point / vector / versor

 Three components:
 Scaling
 Rotation
 Translation

Thus, can be applied to any 3D
thing (apply them to all positions
directions etc …)

can be “uniform” (“isotropic”)
or not (“anisotropic”, different factors in X,Y,Z)

… modelling the State / Act of:
 Size / Rescale up (if > 1), down (if <1)

 Orientation / Rotate
 Position / Displace

Recap: transformation associated to
an object in the scene

 From:
 local space a.k.a.
 object space a.k.a.
 pre-transform space
 a.k.a. «castle» space /

«hero» space /
«camera» space /
«chainsaw» space /
«bazooka» space / etc

 Any object associated to a spatial location in the
game is given its transformation, which goes

 To:
 global space a.k.a.
 world space a.k.a.
 post-transform space

5

7

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 3

TA

Transforms associated
to each object in game

world

TB
TC

TD

TA

Moving objects around =
updating their transforms

world

TB
TC

TD

TD Tnew

Tnew TD
…or…

8

9

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 4

Moving objects: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to object D (w.r.t. its current placement)
 Say: rotation = ide scaling = 1 translation = (-2,0,0)
 Tnew = “move two units to the left” (assuming X = right)

 How to update transformation TD ? Two ways:
 TD ← TD ∘ Tnew = object D moves 2 units on its left
 TD ← Tnew ∘ TD = object D moves 2 units on world’s left

(meaning, i.e., “West-ward”)

We call this “applying the new transformation in local space” or “in global space respectively”
E.g., in unity: see parameter “relativeTo” of method Transform.Translate

World Space

Local Space
𝑥 𝑧

𝑦

𝑧

𝑥

𝑦

TD

TD ← Tnew TD

firstthen

Tnew

10

11

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 5

Local Space
𝑥 𝑧

𝑦

𝑧

𝑥

𝑦

TD

TD ← TD Tnew

firstthen

World Space

Moving objects: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say: rotation = ide scaling = 2 translation = (0,0,0)
 Tnew = “double by ×2” (note: volume gets ×8 bigger)

 How to update transformation TD ? Two ways:
 TD ← TD ∘ Tnew = object D enlarges from its center
 TD ← Tnew ∘ TD = object D enlarges from world’s center

(i.e. moves away from it)

12

13

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 6

Moving object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say: rotation = j scaling = 1 translation = (0,0,0)
 Tnew = “flip by 180° around Up axis” (assuming Y = up)

 How to update transformation TD ? Two ways:
 TD ← TD ∘ Tnew = object D rotates around its up axis

(e.g., goes supine-to-prone if
was laying down)

 TD ← Tnew ∘ TD = object D rotates in world’s up axis

Objects in the scene

 Nodes in the scene host any object that is has a
position, including…
 Static Meshes
 Animated meshes
 The camera

observing the scene
 3D GUI elements
 Spawn points

 Each such object has its own associated transform
 And, therefore, its own local (“object”) space
 The transform goes from local space to world space

 Colliders (hit boxes)
 Microphones
 Sound emitters
 Particle systems

(the emitter)
 Etc

14

15

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 7

Composite scenes:
hierarchical transformations

 So far, we assumed that the transform of each
object goes from local to global in one step

 In reality, scenes can be defined hierarchically
 That is, objects have sub-objects in them
 a «city» is made of «houses»

made of «walls» made of «bricks»
 a «hat» sits on an «head»

which is part of a «character»
who sits in a «spaceship»
moving across the «galaxy»

 a car is a «hull» plus four «wheels»

head

character

spaceship

galaxy
(world space)

hat

Composited
scenes:

T0 T2

T3 T4 T5 T6 T3 T4 T5 T6

world

16

17

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 8

Composited scene:
spaces
within
spaces

world space

«wheel 2
of car A» space

«car A» space

«wheel 0 of
car B» space

«car B»
space

Scene graph

T0
T1

T2

T3 T4 T5 T6

Positioning
of the red car

(w.r.t. the world)

Positioning
of the 1st

wheel (w.r.t
the red car)

In this scene:
- 3 istances of the same

3D model of a vehicle
- 3x4 istances of a same

3D model of a wheel

18

19

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 9

Scene graph

A tree (i.e. a hierarchical structure)
 Each nodes has its own space (a reference frame)

 The Local Space of that node
 To each node we associate:

 Instances to… stuff:
anything at all that has a place in the virtual scene:

 3D models, lights, cameras, virtual microphones
spawn points, explosions, etc

 Root node: world space
 Global Space = local space of the root

 To each arch: we associate the “local” transform
 the transform going from the local space of the child node

to the local space of the parent node

Local VS Global Transform[-ation]s

 Local transform (a.k.a. «relative» transform)
 from: the local space of a node

to: the local space of its parent
 Stored per object!

 Global transform (a.k.a. «absolute» transform)
 from the local space of a node

to the world space
(which the “local” space of the root)

 Procedurally obtained/defined by:
cumulating all local transforms from node to root

 benefit: changing the transform associated to a
node affects its entire subtree

20

21

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 10

World
Space

Scene graph

Space of
Car 1

space of
wheel 1

space of
wheel 2

space of
wheel 3

space of
wheel 4

T0
T1

T2

T3
T4 T5 T6

Space of
Car 3

Space of
Car 2

Local VS Global Transforms

world

B

E F
G

TB TC

TD

TE

TF
TG

TH

DC

H

L

TL

TB ∘ TE ∘ TL
global

transform
of L

local
transform
of H

local
transform
of D

22

23

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 11

Schema for the exercises

world

B

E
F

G

TB TC
TD

TE

TF

TG

TH

DC

H

L

T7

Changing a node positioning…
in local space (refer the schema in prev slide)

 Say T is the transform consisting of moving
an object 2 units on the X
 T = { Scale = 1, Rotation = ide, Translation = (0,0,2) }

 Task:
 we want node L to undergo transform T in local space.
 Meaning: we want L to be moved 2 units (its own units)

in the direction of its right (assuming Unity axis conventions)
 How do we do it?

T୐ ← T୐ ∘ T

(make sure you understand why!)

transform
expressing an
action on L

24

25

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 12

Changing a node positioning…
in global space (refer the schema in the prev slide)

 Say T is the transform consisting of moving
an object 2 units on the X
 T = { Scale = 1, Rotation = ide, Translation = (0,0,2) }

 Task:
 We want node L to undergo transform T in global space.
 Meaning: we want L to be moved 2 units (world units)

in the East direction (if that’s how global ref. frame works)
 Note: we can only change its local transformation

(because we only want to affect node L)
T୐ ← T୐

ᇱ

 How to the new value T୐
ᇱ ?

transform
expressing an
action on L

Changing a node positioning…
in global space - solution

 Global transform of L before the change:
T୆ ∘ T୉ ∘ T୐

 The Global transform of L which we want (after the change):
T ∘ T୆ ∘ T୉ ∘ T୐

 The Global transform of L which we have (after the chamge):
T୆ ∘ T୉ ∘ T୐

ᇱ

 Matching them
T ∘ T୆ ∘ T୉ ∘ T୐ = T୆ ∘ T୉ ∘ T୐

ᇱ

 Doing the math…
T୐

ᇱ = T୉
ିଵ ∘ T୆

ିଵ ∘ T ∘ T୆ ∘ T୉ ∘ T୐

therefore, this is the transformation
applied to the local transform of node L

to make T happen in global space to node L

26

27

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 13

Changing a node positioning…
in global space - solution

T୐
ᇱ = T୉

ିଵ ∘ T୆
ିଵ ∘ T ∘ T୆ ∘ T୉ ∘ T୐

Inverse of the
global transform

of E
(the parent of L)

the
global transform

of E
(the parent of L)

Reminder: inverse of a composite
transform (or, in general, function)

world

space
B

space
A

TA

TB ∘ TA
TB

(TB ∘ TA)⁻¹
=

TA⁻¹ ∘ TB⁻¹TA⁻¹

TB⁻¹

global
transform

of A

Inverse of
global
transform of A

: store

: compute as needed

28

29

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 14

Reminder: inverse of a composite
transform (or, in general, function)

 The inverse of “first Ta then Tb” is
“the inverse of Tb” followed by “the inverse of Ta”

 As it’s natural! If you…
 “take a step forward,

then, turn by 90° clockwise”

…then, to go back to the starting pos, you need to…
 “turn by 90° counter-clockwise,

then, take a step backward”

(TB TA)⁻¹ = TA⁻¹ TB⁻¹

Assigning a new positioning…
in global space (refer the prev schema in slide 26)

 Say T is a transform describing a new global positioning
we want for object L in world space
 T = { scale: (global) sizing of L,

rotation: (global) orientation of L,
translation: (global) position of L }

 How to replace its local transformation T୐ ,
so that its global transformation becomes T?

transform
expressing the
state of L

30

32

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 15

Changing the hierarchy

world

B

E
F

G

TB TC
TD

TE

TF

TG

TH

DC

H

L

TL

L

T’L

Changing the hierarchy…
without changing the position

 Event:
 In the above example, node L is detached from its parent

(E), and becomes a child of the node G
 (this means that, from now on, it’s positioning will be

attached from node G (and C) and follow their movement)
 When the change happens, we don’t want node L to

change its world positioning (pos, orientation…).
 That is, Global transformation of L must stay constant

 Question:
 How to achieve this result by changing its associated

local transform TL (which is the only thing we store for L)?

33

36

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 16

Changing the hierarchy…
without changing the position

 The local tranform T୐ stored for L is substituted by
some new local transformation T୐

ᇱ :
T୐ ← T୐

ᇱ

the problem is then to find this T୐
ᇱ

 Global transform of node L before the change:
T୆ ∘ T୉ ∘ T୐

 Global transform of node L after the change:
Tେ ∘ Tୋ ∘ T୐

ᇱ

 They must be the same, so (doing the math!)…
T୐

ᇱ = Tୋ
ିଵ ∘ Tେ

ିଵ ∘ T୆ ∘ T୉ ∘ T୐

Changing the hierarchy…
without changing the position

 The math:
T୆ ∘ T୉ ∘ T୐ = Tେ ∘ Tୋ ∘ T୐

ᇱ

composite both sides with Tେ
ିଵ on the left…

Tେ
ିଵ ∘ T୆ ∘ T୉ ∘ T୐ = Tେ

ିଵ ∘ Tେ ∘ Tୋ ∘ T୐
ᇱ

composite both sides with Tୋ
ିଵon the left…

Tୋ
ିଵ ∘ Tେ

ିଵ ∘ T୆∘ T୉ ∘ T୐ = Tୋ
ିଵ ∘ Tୋ ∘ T୐

ᇱ

37

38

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 17

TA

The camera in the scene graph

world

TB
TC

TD

camera

The camera is in the scene graph

T0
T1

T2

T3
T4 T5 T6

camera

T8

E.g.: to make the camera follow the car…

Player’s
car

How the
camera is

placed
w.r.t the car

39

40

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 18

The camera in the scene

 The case of the camera is particularly important
 The inverse of its associated transform

goes from View space…
 Where the camera is in the origin,

looks toward Z (or minus Z in some systems) etc.
 The space where the rendering is conveniently done

…to World Space
 In Computer Graphics, +

the inverse of camera transform
is called the View Transforms

Transforms for the Graphics engine
(link to Computer Graphics course)

 The rendering engine uses a few standard
transformations, when rendering an object,

 They are named:
 “Model” matrix: from object space to world space

 Captures how the scene is modelled (by a scener)

 “View” matrix: from world space to view space
 Captures how the scene is viewed (by the camera)

 “Model-View” matrix: from object space to view space
 (“matrix” only because trasnforms are usually encoded as

4x4 matrices by Rendering engines & graphics APIs)

 Computing them from the scene graph is easy!

41

42

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 19

Transforms for the Graphics engine

T0
T1

T2

T3
T4 T5 T6

camera

T8

Player’s
car

“Modelling”
transform:

T0 ∘ T3

“View”
transform:
(T2 ∘ T8)⁻¹

=
T8⁻¹ ∘ T2⁻¹

Transforms for the Graphics engine

T0
T1

T2

T3
T4 T5 T6

camera

T8

Player’s
car

“Model-View” transform: T8⁻¹ ∘ T2⁻¹ ∘ T0 ∘ T3

43

44

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 20

The camera in the scene graph

 Camera:
 Like any other object in the scene, the camera sits in a node the

scene-graph
 for the scene to be rendered, there must be a camera somewhere in

the graph!
 View Space = Local Space of the camera
 (Screen Space is a similar, and sometimes equivalent, concept)

 the View Space is convenient to perform the rendering
 Because, in view space, coordinates describe where things are

w.r.t. the camera!
 For example: z > 0 ⇒ object in front of the camera,

z<0 ⇒ object behind the camera (don’t render)
 Camera animations = move camera

 by doing anything that changes its global transformation
 e.g., a script changing its local transform… or the one of its parent!

Changing a node positioning…
in view-space (refer the schema in the slide above)

 Say T is (again) the transform consisting of moving
an object 2 units on the X

 Assume the camera is in node H
 Event:

 We want node L to undergo transform T in view space.
 Meaning: we want L to be moved 2 units (camera space units)

on the right of the screen
 This is useful e.g. from a GUI point of view. Move an object

as dragged by a mouse
 Note: we still can only change its local transforamtion:

T୐ ← T୐
ᇱ

 Task: find T୐
ᇱ

45

46

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 21

Changing a node positioning…
in view-space : solution

 View-space positioning of L before the event:
Tୌ

ିଵ ∘ Tେ
ିଵ ∘ T୆ ∘ T୉ ∘ T୐

=
V୐ ∘ T୐

 After the event, we want it to be:
T ∘ V୐ ∘ T୐

 After the event, it will be:
V୐ ∘ T୐

ᇱ

 Matching them:
T୐

ᇱ = V୐
ିଵ ∘ T ∘ V୐ ∘ T୐

V୐
Model-View

transform of L

Summary
 Thanks to the ability to efficiently compute

compositions and inverses of transformations…
 …we can store only the local transform of every node

(from its local space to its parent space), and dynamically get
 the global transform (from its local space to world space),
 the model-view transform (from its local space to camera space)
 or actually any transform from a local-space of any node A

to the space of any other node B in the graph

(these transforms represent positioning of B w.r.t A)
 …we can apply

 any new transform T
 to move to any node X in the graph
 in the space of any other node Y

(e.g., in world space, in local space, in view space,
or actually in the space of another node)

acting only on the local transformation of X
 Which can still the only thing we store at the nodes

transforms
considered
as states

transforms
considered
as actions

47

48

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 22

Spaces (where to compute stuff)

 Anything that requires the computation from 3D stuff
(versor,vectors,points…)
 E.g. see “geometry problems” in past lecture

(“does the guard see the fly?” etc)
 E.g.: lighting computation!

 …must use verors/vectors/points expressed
in the same space!
 Any node of the graph can be chosen for this… (among other choices)
 All elements must be brought to the space of this node
 Some choices can be more convenient than others

 Examples…
 Physics simulation, collision detection: world space
 Lighting computation: Object space? World space? View space?

Exercises
(refer the the schema in slide 26)

 Report the global transform of node L
 I place a camera in node H:

report the View Transform for this scene
 Say T is a transformation that translates by (0,2,0)
 How do you apply T to L …

1. in L Space (the local space of L)?
2. in World space?
3. in View Space?

(that is, which of the stored transformations changes, and how)
 Find the origin of space E in space H, and viceversa
 A microfone is in (the origin of) node E, and a speaker is in (the

origin of) node H. Find the distance from the mic to the speaker

49

52

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 23

Authoring a 3D scene in a game

 E.g. as a part of the Level Design
 Two different parts, by different artists:
 3D modellers make «scene props»

 the 3D models to be assembled

 (including their texutres etc)

 sceners compose the scene
 they assemble the props into a Scene Graph

= asset

Scene Graph as a data structure

 Each engine / library adopts its own solution
 No standards

 but file formats exists which can include a scene graph:
e.g. COLLADA

Typical concepts:
 each Node class stores

 the local transform
 link to parent
 maybe, and/or to children, sibilings…)
 links to instances / assets

 global transforms / inverse are computed on demand
 some mechanism is used for repeated sub-trees

53

56

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 24

Scene Graph as a data structure:
Mechanisms for shared subtrees

 The scene-graph will often contain multiple
copies of shared subtrees
 Existing implementation implement shared subtrees

in different ways
 In Unity: see “Prefabs”
 In Unreal: see “BluePrints”

Rendering composite scenes:
multi-instancing

 Each node contains a reference / pointer / index
to one 3D object (e.g. a 3D mesh, etc) model
 E.g. all wheels of all cars are the same “wheel” model

 Different instances of the same object can appear
in multiple locations of the scene
 E.g. all wheels of all cars are the same “wheel” model
 Advantage:

only one 3D model in RAM,
but many identical 3D models on the screen

 Each model is associated to a different transform,
plus other data, e.g. different “materials”

57

58

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 25

Nodes of a scene-graph in unity
GameObjects & Transforms

A node = a GameObject with
 a transform field, containing

 its local transform
 links to Parent, Children (and siblings) – which are “transforms”

 any number of associated “components”,
which represent anything residing in that node, like
 Meshes (to display at this nodes)
 Cameras: active one(s) produces the rendering(s)
 “RigidBodies”: objects controlled by the physics (see physics)
 “Colliders”: geomtry proxies used for collisions (see physics)
 “Particle systems” : (i.e. the “emitters” of particles)
 Sound producers / receivers
 Scripts …

 The Transformation actually stores the local transf:
 localPosition, localRotation, localScale
 goes from a node to its parent

 the Global transformation can be accessed
via the properties:
 position, rotation, scale

(“global” is left implicit)
 what does getting / setting them really do? (exercise)
 this it doesn’t always work for “scale”:
scale lossyScale (read only)

Why? (A: it’s because anisotropic scaling)

Nodes of a scene-graph in unity
GameObjects & Transforms

it feels like
assigning / reading a field,
it actually means invoking
setters/getters (C# trick)

62

64

3D Videogames
04: The scene graph

2022-03-30

Marco Tarini
Università degli studi di Milano 26

Digression on
properties and components

 In C#, a property has a syntax making it look
like a field (you can read or assign it)
but it’s actually getter and setter methods
 obj.xx = 3 …means… obj.set_xx(3)

 foo = obj.xx …means… foo = obj.get_xx()

 In Unity, a component is a generic something
attached to a GameObject
 GameObject g;
g.getComponent< type >()
returns component of required type
(if it exists)

nodes
in the

scenegraph

Nodes of a scene-graph in Unreal
USceneComponent

A node within a graph with:
 link to parent / children:
 getParentComponents
 getChildComponent(index)

 stuff associated to a node:
UPrimitiveComponent (subclass)
 models, physical bodies, etc

 Local Transform: (fields)
 RelativeLocation , RelativeRotation, RelativeScale

 Global Transform: (methods)
 GetComponentTransform() /* return transformation */

65

66

