3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

2023-04-13

Course Plan

Introduction @

Mathematics for 3D Games @000 ®®
Scene Graph @

Game 3D Physics @ @ + @@

Game Particle Systems ¢

Game 3D Models D @

Game Textures @@

Game Materials €

Game 3D Animations D@ @
Networking for 3D Games @

3D Audio for 3D Games @

Rendering Technigues for 3D Games @

lec.
lec.
lec.
lec.
lec.
lec.
lec.

lec.

L N DU R WwWN R

lec.
lec. 10:
lec. 11:
lec. 12:

lec. 13: Artificial Intelligence for 3D Games @

72

Forces:
examples

-

e Gravity
e Constant - m, near the surface of a planet
e Function of positions in a space simulation
e Wind pressure
e Depends on the area exposed in the wind direction
e Electrical / magnetic forces
e Buoyancy (ita: forza di Archimede)
e Depends on the weight of the submerged volume
e Mechanical springs
e simple model: Hooke’s law — see later
e Shock waves (explosions)
e Fake / “Magic” control forces

e added for controlling the evolution of the system,
not physically justified

f = function(p,...)

the positions

‘ =]
k.

Primarily, a function of

But not always,
and sometimes
not only

of positions
(also: velocities?
Global time?)

73

Universita degli studi di Milano



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

.-“—_Vr
Non-forces: - 2y :LIL,_
examp|es f = function(p,...)

e Real-world forces can be simulated by things
that aren’t technical “forces”:

e Frictions

e Can be simulated by: drag (see later)
e Impacts & other violent things

e Inreality: very short, very strong forces

e Duration << dt

e Must be simulated by: impulses (see later)
e Resistance forces

e Inreality, an internal force that contrast an external force (such as
gravity)
E.g.: what prevents your computer to fall through the table

e E.g.: what prevents a pencil to contract when you push it on the paper
e Necessary to simulated the solidity bodies
e Can be simulated by: positional constraints (see later)

74

Forces: control forces L

e Example: the player pressing the forward button
= a forward force is applied to his/her avatar
e no physical justification
e “Don’t ask questions, physics engine”
e According to many:
it’s better when that’s not done much
e the more physically justified the forces, the better

e for example: does the car accelerate...
because a torque is appied to its two traction wheels VS
because a force is applied to its body

e usually much harder to cortrol

e see also: gameplay VS cosmetics, control VS realism,
emerging behaviours

75

Marco Tarini
Universita degli studi di Milano 2



3D Video Games
05: Game Physics - Dynamics - 2

Forces: Springs

Hooke’s law:

f, = k(£ = |lpy — pall)

Py — Pa
lp» — Pall

76

Forces: Springs
(Hooke’s law)

e Simplified model for elastic springs

e One spring connects two
particles in p, and pp

e Characterized by:
1. Restlength #
2. Stiffness k

e Spring force:

and compression

h=-f.

counteracts expansion £ = k(¢ — [Ip — pall) 22— Lo

llps — Pall

77

Marco Tarini
Universita degli studi di Milano

2023-04-13



3D Video Games
05: Game Physics - Dynamics - 2

2023-04-13

Forces: Springs
(Hooke’s law)

f, = k(£ - |lpy — pall)

=l
I
1

Q

Py = pall

P» — Pa

78

e Adissipative force
e Damping factor kp

e \Wants to slow down
elongation / shrinking

Ppr = Pa

d= ——~-%_
lpp — Pall

Forces: springs friction e

fo = kp(d- (B — 7)) d

79

Marco Tarini
Universita degli studi di Milano



3D Video Games
05: Game Physics - Dynamics - 2

Mass and Spring systems

e Useful for deformable objects
e for instance: elasitic ropes (or hairs)

Extra springs, /
to model resistance
to bending
80
Mass and Spring systems
e Forinstance: cloth
3 ..\;\7\
by Blizzard En‘t‘ertainment 9
81

Marco Tarini
Universita degli studi di Milano

2023-04-13



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

Mass and Spring systems ey
can model...

e Elastic deformable objects (aka “soft bodies”)
e Elastic = go back to original shape
e Easily modelled as compositions of (ideal) springs.
e Plastic deformable objects? (yes, but not easy)
e Plastic = assume deformed pose permanently

e Dynamically change rest-length L in response to large
compression/stretching, in certain conditions (not easy)

e Rigid bodies / inextensible ropes ? (they can’t)

e Increase spring stiffness? k — oo
e Makes sense, physically, but...
e Llarge k= large f = instability = unfeasibly small dt needed
e Doesn’t work. How, then? see later
82
n =
R S
Example of forces: o

gravitational force on a plantet surface

e Given a particle with (gravitational) mass m

E= gm aDOWN

83

Marco Tarini
Universita degli studi di Milano 6



3D Video Games
05: Game Physics - Dynamics - 2

Example of forces: )
gravitational forces in open space
e Given two charged particles in p, and pp
with (gravitational) masses m, and m,
- _ Gmgmy py—-Pa _ —Kdaa
2= oy —pal Tpo—pal o= pal® PP
@ P»
fo=~ta
84
Example of forces: electric forces ‘.;_f_,ﬁ-
e Given two charged particles in p, and pp
with positive or negative charges q, and g
— _ —Kqaqy Pp—Pa _ —Kaaa B
oy =pal To—pal Ty —pal® >~ P
® P»o

85

Marco Tarini
Universita degli studi di Milano

2023-04-13



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Example of forces: wind pressure .H:ﬁ-

e Wind is a force acting on surfaces

e The larger the exposed surface to the wind,
the larger the force

e The more orthogonal the surface to the wind direction,
the larger the force

e The stronger the wind pressure w (a vector), the larger the force

llﬁ Po
I = L 01— b0y x upe) 9]

$\V—>V f =z ®1=Po) X (P1—Po) - W Tl

P1
p2
f
86
Example of forces: etc R

e Remember all forces acting on a particle add up!
(vector summatory)

'/ )
f fun(p, ...)

= -
one 3 f/m
step

p—p+v-dt
Vev+a-dt

_ J

2023-04-13

87

Universita degli studi di Milano



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

Attrition (or friction) forces ol

e |sotropic friction forces :
e aforce that oppose any motion, regardless of its direction
e direction: always opposite of current velocity direction

e magnitude: proportional to the speed
(= magnitude of velocity vector)

e note: this force depends on velocity, not just positions.

e models the effect of the medium where the motion happens
(air, water, thin space...)

e the denser the medium, the stronger the force
(water >> air >> thin space)

e Planar friction forces:
e A force that happens when things slide against each other
e Always parallel to the contact plane (orthogonal to the normal)

88

Attrition (or friction) forces ik
by velocity dumping

e A useful trick to quickly simulate isotropic friction:

“velocity damping”

e we simply reduce all velocity vectors
by a fixed proportion

e for example: scale velocity down by 2% per second
(drag = 0.02 / sec)
(that is, scale velocity vector by a factor 0.98)

e It makes sense!

Higher speed = more attrition = more loss of speed.
Attrition = a “fixed tax” on speed.

89

Marco Tarini
Universita degli studi di Milano 9



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

. . At
Velocity Damping: "L.‘,L,L"
pseudo-code

Vec3 position
Vec3 velocity

void initState() {
position = ..
velocity = ..

}

void physicStep( float dt )
{
Vec3 acceleration = force( positions ) / mass;
position += velocity * dt;
velocity += acceleration * dt;
velocity *= (1.0 - DRAG * dt);

}

void main() {

initState();

while (1) do physicStep( 1.0 / FPS );
}

90

Velocity Damping: notes U8

e Velocity Damping helps for robustness,
e avoids energy to ever increase

e Problems of Velocity Damping

e ittends to exaggerate frictions of, e.g., air,
especially in absence of contacts

e crude approximation:
attrition forces are not really linear with speed
e |n practice:
e low drag: hardly noticeable (except in the long run)

e high drag: everything feels like to be moving in molasses;
(ita: melassa); everything quickly grinds to a halt

e super high drag: (e.g. 50% per sec) basically, no inertia anymore
useful to converge to (local) minimal energy states:
simulation turns into a solver for statics

91

Marco Tarini
Universita degli studi di Milano 10



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Continuity of pos and vel L

e In real Newtonian physics the state
(pos and vel) can only change continuously

e No sudden jump!
e |n practice, sometimes is useful to artificially
break continuity in the simulations
e Discontinuous changes:
e in positions: “teleports”
e in velocity: “impulses”
e (those are not necessary variations justified by forces)

92
: : S —X
Dynamics displacements | @ discontinuous
. . \\change ofstate(posmon)/
VS kinematic —
v
p=p+V-dt p=p+dp
aka dynamic aka Kinematic
displacements displacements
Justified Just
by physics “teleportation”
93

Universita degli studi di Milano

2023-04-13

11



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

]

SR

Impulses VS Forces

a discontinuous

o

change of state (velocity)

e Forces (continuous) e Impulses
e Continuous application e Infinitesimal time
e every frame e unatantum

;217+(j7/m)-dt ;zm(f/m)}{

short forces
(such as impacts)

they model very intense but

94

Impulses VS Forces

e force:
e it determines an acceleration
e acc determines a (continuous!) change of vel
e physically correct

e Impulse :
e a (discontinuous!) change of vel
e useful to control a simulation (direct change of velocity)
e a physical interpretation: a force with:
e application time approaching zero
e magnitude approaching infinity
e Useful to model phenomena with a time scale << dt
e ex: a tennis ball rebounding against a tennis racket

95

Universita degli studi di Milano

2023-04-13

12



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

:‘—,f

E .
'H-,fl |

Impulses VS Forces

e what does truly happen when it bounces off the ground?

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse-based approximations

96

=
k.

Impulses VS Forces 1

L

e what does truly happen when it bounces off the ground?

3]l

0 msec 1 msec 2 msec 3 msec 4 msec

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse based approximations

97

Marco Tarini
Universita degli studi di Milano 13



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Impulses VS Forces g

e what does truly happen when it bounces off the ground?

no impact huge no impact
force force force
s - v—Hr A N
—ﬂﬁﬂ—
dt

e This can only be modelled as an impulse, not a force
e See also collision response, later

98

w =
Effect of integration errors ".;._:1_,“'_-

of System Energy

e Because of integration errors:
simulated solutions # “real” solutions
e |n areal system, the total energy can never increase
e typically, it decreases over time, due to dissipations
e thatis, attrition turns dynamic energy into heat
e Therefore, a particularly nasty integration error is when
the total energy of the system increases over time
e e.g.:apendulum swings wider and wider
e Particularly bad because:

e compromises stability
(velocity = big, displacements = crazy, error = crazy)

e compromises plausibility
(we can see it’'s wrong)
e Asimple way to avoid this:
make sure the simulation always includes attritions
e makes simulation more stable + robust

99

Universita degli studi di Milano

2023-04-13

14



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

Other numerical integrators R
(“numerical ways to compute integrals”)

e Some commonly used alternatives (among MANY!):
“Forward” Euler method (the one seen so far)

Symplectic Euler method

Leapfrog method
Verlet method

e These are just variants of each other — let’s see them!
From the code point of view, no big change

They can differ in accuracy / behavior

They can have different “orders of accuracy”

Note: a more accurate method is also more efficient
(larger dt are possible, so fewer steps are necessary)

100

_H_" _
Forward Euler Method: limitations "-‘_,.ﬂl

e efficiency / accuracy: not too good
e error accumulated over time = linear in dt
e it'sonly a “first order” method

e Doubles the steps = halve the dt, only halves the errors
(can be better, but no guarantees)

e scarce stability for large dt

e minor problem: no reversibility, even in theory

e real Newtonian Physics is reversible:
flip all velocities and forces = go backward in time.

e In our simulation (with Euler): this doesn’t work exactly

e Ability to go reverse a simulation would be useful in games!
E.g. replays in a soccer game ?

e Pro tip: basically, reverse time direction never done like this
To go backward in time accurately, store states

101

Marco Tarini
Universita degli studi di Milano 15



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

P
Forward Euler iR
init P« -
state V — ...
e N
f < fun(p,..)
oo A f/m t=1t+dt
p—p+v-dt
Vev+a-dt
N y
102
Symplectic Euler R
init P« -
state ‘—’) — ...
s \
f < fun(p,..)
one - 7
cep @< f/m t=t+dt
Vev+a-dt
pep+v-dt
N /
103

Marco Tarini
Universita degli studi di Milano 16



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Forward Euler pseudo code L
Vee3 position = Equwalejt to...
Vec3 velocity = fi < function(py,...)
void initState () { a; < f/zn R
Position = vi+1 — vi + al' ‘ dt
velocity = .. Dis1 < D + ﬁi . dt
}
void physicStep( float dt )
{
Vec3 acceleration = compute force( position ) / mass;
position += velocity * dt;
velocity += acceleration * dt;
}
void main () {
initstate();
while (1) do physicStep( 1.0 / FPS );
}
104
" =
Symplectic Euler pseudo code -H:,'“-

(aka semi-implicit Euler)
Equivalent to...
ﬁ- < function(pj,...)

d; «
void initState () { a f/zn R
position = .. Vig1 <V +a;-dt

velocity = .. Pi+1 < Pi + Viyp - dt
} i
void physicStep( float dt )
{

Vec3 position
Vec3 velocity

Vec3 acceleration = compute force( position ) / mass;

@ velocity += acceleration * dt; st flio the ord
position += velocity * dt; Just flip the oraer

void main () {

initState() ;

while (1) do physicStep( 1.0 / FPS );
}

105

Universita degli studi di Milano

2023-04-13

17



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Forward Euler:

time: 0dt 1dt 2dt 3dt 4dt 5dt 6 dt 7 dt
pos: * * * /*%A * * *
Vel: * * * / *% * * *
acc: * * * *j * * * *
time: 0dt 1dt 2dt 3dt 4 dt 5dt 6 dt 7 dt
pOS: * * * /t% * * *
Vel: * * * / * ;* * * *
acc: * * * * * * * *
106

acceleration = compute force( position ) mass; li,.TTL

velocity += acceleration * dt; s

position += velocity * dt;

acceleration = compute force( position ) mass;

velocity += acceleration * dt;

position += velocity * dt;

acceleration = compute force( position ) mass;

velocity += acceleration * dt;

position += velocity * dt;

position += velocity * dt;

acceleration = compute force( position ) mass;

velocity += acceleration * dt;

position += velocity * dt;

acceleration = compute force( position ) mass;

velocity += acceleration * dt;

position += velocity * dt;

acceleration = compute force( position ) mass;

velocity += acceleration * dt;

107

Universita degli studi di Milano

2023-04-13

18



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Forward Euler VS Symplectic Euler e

(warning: over-simplifications)

e From the code point of view, they are very similar

e The semantics changes:

e in Symplectic Euler
the position altered using next frame velocity

7 "

e (it's “wrong”, in a sense — but works better)

e Similar properties, but better in practice
e Same order of convergence (still just 1 ®)

e On average, better behavior:
more stable and accurate

108

Leapfrog Integration R

109

Universita degli studi di Milano

2023-04-13

19



3D Video Games
05: Game Physics - Dynamics - 2

Leapfrog Integration

t (inap

110

Leapfrog Integration
first step

0.0 0.5 1.0

t (inap

| | |
T I I

%

a=f(py, )

Vos = Vo +a-di]f2

111

Marco Tarini
Universita degli studi di Milano

2023-04-13

20



3D Video Games 2023-04-13
05: Game Physics - Dynamics - 2

Leapfrog Integration

0.0 0.5 1.0 15 2.0 25 t (in dt

Dy =Dy +Vs-dt Py =p v, s-di D3 =Py +V,5-dt

a=f(py, ) a=f(py,..)

Vis=Vysta-dt  V,s =V +a-dt

112

Leapfrog method: pros and cons

e Same cost as Euler —and basically same code

e Velocity stored in status = velocity “half a dt ago”
(and after updating it: “half a frame in the future”)

e Only real difference: the initialization of speed
Better theorical accuracy, for the same dt

e better asymptotic behavior:
it's a second order instead of first!

e cumulated error: proportional to dt? instead of dt
e error per frame: proportional to dt3 instead of dt?
Bonus: fully reversible!

e intheory only. Beware numerical errors.

But: requires fixed dt during all the simulation
e for the theory to work as advertised

113

Marco Tarini
Universita degli studi di Milano 21



3D Video Games

05: Game Physics - Dynamics - 2

2023-04-13

e current pos Pnow

e last pos Poid

Verlet integration method

e |dea: remove velocity from state

5 . db
M. Pnow
o

Pold

e Current velocity is implicit
e [t's defined from:

which we need to record

Pnow = Poia T v - dt
—
UV = (Pnow — Poia)/dt

<: Euler & variants

<]; Verlet

114

Verlet integration method R
init Pnow =
state Poig = - - -
I >
f= ]:unCt(pnowr )
a= m expanding
one , f/ this...
step V= (Pnow — Pora)/dt
v=v+da-dt
Pnext = Pnow t+ v-dt
N J
115

Marco Tarini

Universita degli studi di Milano

22



3D Video Games
05: Game Physics - Dynamics - 2

Verlet integration method

init  Pnow < -

state  Poltd € +--

| ¢

f — funct®now)
one g «— f/m
step Pnext < 2pnow — Poia T d- dtz

N

|

Poid < Pnow
Pnow < Pnext

J

116

Verlet integration method:
geometric interpretation

Potd

Prext = 2 *Pnow — 1 - Powa

Prext Can be written as
an extrapolation
of Prow, Poia :

Prext = Mix( Poia » Prow, 2)

N
v
. Prnext
v
Pno

117

Marco Tarini
Universita degli studi di Milano

2023-04-13

23



3D Video Games

05: Game Physics - Dynamics - 2

Marco Tarini

Verlet: characteristics R

e Velocity is kept implicit
e but that doesn’t save RAM:
we need to store previous position instead

e (apointinstead of a vector: same memory)
e Good efficiency / accuracy ratio

e Per-step error: linear with dt

e accumulated error: order of dt? (second order method)
e Extra bonus: reversibility

e it’s possible to go backward in t and
reach the initial state from any state

e only in theory... careful with implementation details

118

Py
Verlet: caveats e

(see next lecture for solutions)

A\it assumes a constant dt (time-step duration)
e if dtvaries: corrections are needed! (how?)

/A Q: how to act on velocity (which is now implicit)?
e for example, how to apply impulses ?
e A:change Pyiq instead (how?)

A\Q; how to act of positions w/o impacting velocity?
e for example, to apply teleports / kinematic motions ?
e A:change both Ppew and Poig (how?)

A\ Q: how to apply velocity damps?

e Aracton Poig Of Pnext (how?)

119

Universita degli studi di Milano

2023-04-13

24



