
3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     1

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Forces:
examples

 Gravity
 Constant · m, near the surface of a planet
 Function of positions in a space simulation

 Wind pressure
 Depends on the area exposed in the wind direction 

 Electrical / magnetic forces
 Buoyancy (ita: forza di Archimede)

 Depends on the weight of the submerged volume
 Mechanical springs 

 simple model: Hooke’s law – see later
 Shock waves (explosions)
 Fake / “Magic” control forces 

 added for controlling the evolution of the system, 
not physically justified

. . .

𝑓 = function(𝐩, . . . )
. . .

Primarily, a function of
the positions

But not always,
and sometimes
not only
of positions
(also: velocities?
Global time?)

72

73



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     2

Non-forces:
examples

 Real-world forces can be simulated by things 
that aren’t technical “forces”:
 Frictions

 Can be simulated by: drag (see later)
 Impacts & other violent things

 In reality: very short, very strong forces
 Duration << dt
 Must be simulated by: impulses (see later)

 Resistance forces
 In reality, an internal force that contrast an external force (such as 

gravity)
E.g.: what prevents your computer to fall through the table

 E.g.: what prevents a pencil to contract when you push it on the paper
 Necessary to simulated the solidity bodies
 Can be simulated by: positional constraints (see later)

. . .

𝑓 = function(𝐩, . . . )
. . .

Forces: control forces 

 Example: the player pressing the forward button
⇒ a forward force is applied to his/her avatar
 no physical justification
 “Don’t ask questions, physics engine”

 According to many:
it’s better when that’s not done much
 the more physically justified the forces, the better
 for example: does the car accelerate…

because a torque is appied to its two traction wheels   VS
because a force is applied to its body

 usually much harder to cortrol
 see also: gameplay VS cosmetics, control VS realism, 

emerging behaviours

74

75



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     3

Forces: Springs

Pa

Pb

Hooke’s law:

f௔ = 𝑘 ℓ − 𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force direction
(versor)

Forces: Springs 
(Hooke’s law)

 Simplified model for elastic springs
 One spring connects two 

particles in 𝐩௔ and 𝐩௕

 Characterized by:
1. Rest length ℓ 

2. Stiffness 𝑘

 Spring force:
counteracts expansion
and compression

Pa

Pb

f௔ = 𝑘 ℓ − 𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

f௕ = - f௔

76

77



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     4

Forces: Springs 
(Hooke’s law)

f௔ = 𝑘 ℓ − 𝐩௕ − 𝐩௔   
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

f௕ = - f௔

force magnitude
(scalar)

(positive or negative)

force direction
(versor)

elongation / compression

force to be applied
to particle a

force to be applied
to particle b

Forces: springs friction

 A dissipative force
 Damping factor 𝑘஽

 Wants to slow down
elongation / shrinking

Pa

Pb

f௔ = 𝑘஽ 𝑑መ ⋅ (𝑣⃗௕ − 𝑣⃗௔)  𝑑መ

𝑑መ =  
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

78

79



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     5

Mass and Spring systems

 Useful for deformable objects
 for instance: elasitic ropes (or hairs)

Extra springs,
to model resistance

to bending

Mass and Spring systems

 For instance: cloth

img by msqrt (pauli kemppinen)by Blizzard Entertainment

80

81



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     6

Mass and Spring systems
can model…

 Elastic deformable objects (aka “soft bodies”)
 Elastic = go back to original shape
 Easily modelled as compositions of (ideal) springs.

 Plastic deformable objects? (yes, but not easy)
 Plastic =  assume deformed pose permanently
 Dynamically change rest-length L in response to large 

compression/stretching, in certain conditions (not easy)
 Rigid bodies / inextensible ropes ? (they can’t)

 Increase spring stiffness? k → ∞
 Makes sense, physically, but… 
 Large k ⇒ large f ⇒ instability ⇒ unfeasibly small dt needed
 Doesn’t work. How, then? see later

Example of forces: 
gravitational force on a plantet surface

 Given a particle with (gravitational) mass  𝑚

𝑓௔ = 𝑔 𝑚    d෠ୈ୓୛୒

force 
magnitude

(positive
scalar)

force
direction
(versor)

some global constant
dependent on… the planet

Notes: 
• does not depend on position,

only on mass
• will produce a 

constant acceleration
(regardless of mass!)
when divided by
(inertial) mass 𝑚

82

83



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     7

Example of forces: 
gravitational forces in open space

 Given two charged particles in 𝐩௔ and 𝐩௕

with (gravitational) masses  𝑚௔ and 𝑚௕

+

- 𝐩𝒃

𝐩𝒂

𝑓௔ =  
𝐺 𝑚௔ 𝑚௕

𝐩௕ − 𝐩௔
ଶ

  
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force 
magnitude

(positive
scalar)

force
direction
(versor)

=      
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଷ

  𝐩௕ − 𝐩௔

some global constant

𝑓௕ = −𝑓௔

Example of forces: electric forces

 Given two charged particles in 𝐩௔ and 𝐩௕

with positive or negative charges  𝑞௔ and 𝑞௕

+

- 𝐩𝒃

𝐩𝒂

𝑓௔ =
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଶ   

𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force 
magnitude

(scalar)
positive or
negative

force
direction
(versor)

=      
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଷ   𝐩௕ − 𝐩௔

some global constant

84

85



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     8

Example of forces: wind pressure

 Wind is a force acting on surfaces
 The larger the exposed surface to the wind,

the larger the force
 The more orthogonal the surface to the wind direction,

the larger the force
 The stronger the wind pressure 𝑤 (a vector), the larger the force

𝑤

𝐩𝟎

𝐩𝟏

𝐩𝟐

𝑓 =
𝟏

𝟐
(𝐩𝟏 − 𝐩𝟎) × (𝐩𝟏−𝐩𝟎) ȉ 𝑤   

𝑤

𝑤

area vector

force magnitude
(scalar)

force
direction
(versor)

(apply 1/3 of 𝑓 on each particle)

Example of forces: etc

one 
step

a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

 Remember all forces acting on a particle add up!
(vector summatory)

86

87



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     9

Attrition (or friction) forces

 Isotropic friction forces :
 a force that oppose any motion, regardless of its direction
 direction: always opposite of current velocity direction
 magnitude: proportional to the speed  

(= magnitude of velocity vector)
 note: this force depends on velocity, not just positions.
 models the effect of the medium where the motion happens 

(air, water, thin space…)
 the denser the medium, the stronger the force

(water >> air >> thin space)

 Planar friction forces:
 A force that happens when things slide against each other
 Always parallel to the contact plane (orthogonal to the normal)

Attrition (or friction) forces
by velocity dumping

 A useful trick to quickly simulate isotropic friction:
“velocity damping”
 we simply reduce all velocity vectors 

by a fixed proportion
 for example: scale velocity down by 2% per second

(drag = 0.02 / sec) 
(that is, scale velocity vector by a factor 0.98)

 It makes sense! 
Higher speed = more attrition = more loss of speed.
Attrition = a “fixed tax” on speed.

88

89



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     10

Velocity Damping: 
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = force( positions ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

velocity *= (1.0 – DRAG * dt);

Velocity Damping: notes
 Velocity Damping helps for robustness, 

 avoids energy to ever increase 

 Problems of Velocity Damping 
 it tends to exaggerate frictions of, e.g., air, 

especially in absence of contacts
 crude approximation: 

attrition forces are not really linear with speed

 In practice:
 low drag: hardly noticeable (except in the long run)
 high drag: everything feels like to be moving in molasses; 

(ita: melassa); everything quickly grinds to a halt
 super high drag: (e.g. 50% per sec) basically, no inertia anymore

useful to converge to (local) minimal energy states: 
simulation turns into a solver for statics

90

91



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     11

Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially 
break continuity  in the simulations

 Discontinuous changes:
 in positions: “teleports”
 in velocity: “impulses”
 (those are not necessary variations justified by forces)

Dynamics displacements
VS kinematic

aka dynamic
displacements

Justified 
by physics

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

Just
“teleportation”

. . .
p = p + 𝑑p
. . .

a discontinuous 
change of state (position)

92

93



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     12

Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

 
...

/

...

dtmfvv 


 Impulses
 Infinitesimal time
 una tantum

 
...

/

...

mivv




a discontinuous 
change of state (velocity)

they model very intense but 
short forces 
(such as impacts)

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 physically correct

 Impulse :
 a (discontinuous!) change of vel
 useful to control a simulation (direct change of velocity)
 a physical interpretation: a force with:

 application time approaching zero
 magnitude approaching infinity

 Useful to model phenomena with a time scale << dt
 ex: a tennis ball rebounding against a tennis racket

94

95



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     13

 what does truly happen when it bounces off the ground? 

 very strong forces (but not infinite) 
 applied for a very short time (but not instantaneous)
 see collision response later for details 

about the impulse-based approximations

Impulses VS Forces

Impulses VS Forces

 what does truly happen when it bounces off the ground? 

 very strong forces (but not infinite) 
 applied for a very short time (but not instantaneous)
 see collision response later for details 

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v

96

97



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     14

Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
 See also collision response, later

 what does truly happen when it bounces off the ground? 

Effect of integration errors
of System Energy
 Because of integration errors:

simulated solutions ≠ “real” solutions
 In a real system, the total energy can never increase 

 typically, it decreases over time, due to dissipations
 that is, attrition turns dynamic energy into heat

 Therefore, a particularly nasty integration error is when 
the total energy of the system increases over time
 e.g.: a pendulum swings wider and wider

 Particularly bad because:
 compromises stability

(velocity = big, displacements = crazy, error = crazy)
 compromises plausibility 

(we can see it’s wrong)
 A simple way to avoid this: 

make sure the simulation always includes attritions
 makes simulation more stable + robust

98

99



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     15

Other numerical integrators
(“numerical ways to compute integrals”)

 Some commonly used alternatives (among MANY!):
 “Forward” Euler method (the one seen so far)
 Symplectic Euler method
 Leapfrog method
 Verlet method

 These are just variants of each other – let’s see them!
 From the code point of view, no big change
 They can differ in accuracy / behavior
 They can have different “orders of accuracy”
 Note: a more accurate method is also more efficient

(larger 𝑑𝑡 are possible, so fewer steps are necessary)

Forward Euler Method: limitations

 efficiency / accuracy: not too good
 error accumulated over time = linear in dt
 it’s only a “first order” method
 Doubles the steps = halve the dt , only halves the errors 

(can be better, but no guarantees)
 scarce stability for large dt
 minor problem: no reversibility, even in theory

 real Newtonian Physics is reversible:
flip all velocities and forces ⇒ go backward in time. 

 In our simulation (with Euler): this doesn’t work exactly 
 Ability to go reverse a simulation would be useful in games! 

E.g. replays in a soccer game ?
 Pro tip: basically, reverse time direction never done like this  

To go backward in time accurately, store states

100

101



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     16

Forward Euler

init 
state

one 
step dttt 

𝐩 ← ⋯

v ← ⋯

f⃗  ← 𝑓𝑢𝑛(𝐩, … )

a ← f⃗/𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

Symplectic Euler

init 
state

one 
step dttt 

𝐩 ← ⋯

v ← ⋯

f⃗  ← 𝑓𝑢𝑛(𝐩, … )

a ← f⃗/𝑚

v ← v + a ⋅ 𝑑𝑡

𝐩 ← 𝐩 + 𝑣⃗ ⋅ 𝑑𝑡

102

103



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     17

Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ ← 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ ← 𝑓/𝑚
𝑣⃗௜ାଵ ← 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ ← 𝑝௜ + 𝑣⃗௜ ⋅ 𝑑𝑡

Symplectic Euler pseudo code
(aka semi-implicit Euler)
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
velocity += acceleration * dt;    
position +=     velocity * dt;

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ ← 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ ← 𝑓/𝑚
𝑣⃗௜ାଵ ← 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ ← 𝑝௜ + 𝑣⃗𝒊ା𝟏 ⋅ 𝑑𝑡

just flip the order

104

105



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     18

…7 dt6 dt5 dt4 dt3 dt2 dt1 dt0 dttime:

…********pos:

…********vel:

********acc:

Forward Euler:

2

1

3

Symplectic Euler:

…7 dt6 dt5 dt4 dt3 dt2 dt1 dt0 dttime:

…********pos:

…********vel:

********acc:

3

1

2

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

position += velocity * dt; 

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

position += velocity * dt; 

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

position += velocity * dt; 

position += velocity * dt; 

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

position += velocity * dt; 

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

position += velocity * dt; 

acceleration = compute_force( position ) / mass;

velocity += acceleration * dt; 

106

107



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     19

Forward Euler VS Symplectic Euler
(warning: over-simplifications)

 From the code point of view, they are very similar
 The semantics changes:
 in Symplectic Euler 

the position altered using next frame velocity 
 (it’s “wrong”, in a sense – but works better)

 Similar properties, but better in practice
 Same order of convergence (still just 1 )
 On average, better behavior:

more stable and accurate

Leapfrog Integration

108

109



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     20

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step 

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa






110

111



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     21

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp  5.001



dtavv

pfa




5.05.1

1 ...),(


dtvpp  5.112



dtavv

pfa




5.15.2

2 ...),(


Pos

dtvpp  5.223



Pos

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago” 

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of speed

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a second order instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible! 
 in theory only. Beware numerical errors.

 But: requires fixed dt during all the simulation
 for the theory to work as advertised

112

113



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     22

Verlet integration method

 Idea: remove velocity from state
 Current velocity is implicit
 It’s defined from: 
 current pos 𝐩௡௢௪

 last pos 𝐩௢௟ௗ
which we need to record

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝐩௢௟ௗ𝐩௢௟ௗ

𝐩௡௢௪  = 𝐩௢௟ௗ + 𝑣⃗  · 𝑑𝑡

𝐩௡௢௪

Euler & variants

Verlet

Verlet integration method

one 
step

expanding 
this…

init 
state

𝐩௡௢௪ = . . .
𝐩௢௟ௗ = . . .

𝑓 = 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪, … )

𝑎⃗ = 𝑓/𝑚
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡
𝐩୬ୣ୶୲ = 𝐩௡௢௪ + 𝑣⃗ ⋅ 𝑑𝑡

114

115



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     23

Verlet integration method

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

init 
state

one 
step

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚
𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

Verlet integration method:
geometric interpretation

𝐩௡௘௫௧ =  2 ⋅ 𝐩௡௢௪ −   1   ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢

𝐩௡௘௫௧ = 𝑚𝑖𝑥(  𝐩௢௟ௗ ,   𝐩௡௢௪,  2)

𝐩௡௘௫௧ can be written as 
an extrapolation
of   𝐩௡௢௪ ,  𝐩௢௟ௗ :

𝑣⃗

𝑣⃗

116

117



3D Video Games                                
05: Game Physics - Dynamics - 2

2023-04-13

Marco Tarini                                  
Università degli studi di Milano     24

Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM: 

we need to store previous position instead
 (a point instead of a vector: same memory)

 Good efficiency / accuracy ratio
 Per-step error: linear with dt
 accumulated error: order of dt2  (second order method)

 Extra bonus: reversibility
 it’s possible to go backward in t and 

reach the initial state from any state
 only in theory… careful with implementation details

Verlet: caveats
(see next lecture for solutions)

 it assumes a constant dt (time-step duration)
 if dt varies: corrections are needed!  (how?)

 Q: how to act on velocity (which is now implicit)?
 for example, how to apply impulses ?

 A: change  𝐩௢௟ௗ instead (how?)

 Q: how to act of positions w/o impacting velocity?
 for example, to apply teleports / kinematic motions ?

 A: change both  𝐩௡௘௪ and  𝐩௢௟ௗ (how?)

 Q: how to apply velocity damps?
 A: act on 𝐩௢௟ௗ or 𝐩௡௘௫௧ (how?)

118

119


