Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Changing the value of $d t$ in Verlet (whenever it's not constant)

Problem:

if $d t$ now changes to a new $d t^{\prime}$
then, all $\mathbf{p}_{\text {old }}$ must be updated to some $\mathbf{p}_{\text {old }}^{\prime}$
Find $\mathbf{p}_{\text {old }}^{\prime}$:

$$
\begin{array}{ll}
\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}\right) / d t & \begin{array}{l}
\text { current velocity } \vec{v} \\
\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}^{\prime}\right) / d t^{\prime}
\end{array} \\
\text { and position } \mathbf{p}_{\text {now }} & \text { must not change }
\end{array}
$$

$$
\Longrightarrow
$$

$$
\mathbf{p}_{\text {old }}^{\prime}=\mathbf{p}_{\text {now }} \cdot\left(d t-d t^{\prime}\right) / d t+\mathbf{p}_{\text {old }} \cdot d t^{\prime} / d t
$$

Velocity damping in Verlet

implicit

- Velocity at next frame: $\quad \vec{v}=\left(\mathbf{p}_{\text {next }}-\mathbf{p}_{\text {now }}\right) / d t$
- We want to multiply \vec{v} a factor $C_{\text {DAMP }}$
- before applying accelerations
- We can do that using a more general formula for $\mathbf{p}_{\text {next }}$

$$
\mathbf{p}_{\text {next }}=2 \cdot \mathbf{p}_{\text {now }}-1 \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}
$$

$\mathbf{p}_{\text {next }}=\left(1+c_{\text {DAMP }}\right) \cdot \mathbf{p}_{\text {now }}-c_{\text {damp }} \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}$

125

Position Based Dynamics (PDB)

- A positional constraint is
an equality/inequality
\qquad
involving the positions of particles.
- Useful, for example, to model consistency conditions
- Like "solid objects don't compenetrate each other", or "steel bars won't become shorter or longer than they are"
- We will see many examples

B
We enforce (impose) positional constraint directly by displacing the positions of particles

- Thanks to Verlet: this displacement automatically causes some appropriate update of the velocity!
- it's not necessarily correct, but it's plausible and robust

Verlet + Position Based Dynamics. Advantages

- flexibility: different constraints can be used to model many different phenomena
- Useful constraints are straightforward to define
- They are easy to impose (they involve only few particles)
- They can be used to model many possible phenomena
- See following slides for examples
- robustness : plausibility is ensured by explicitly enforcing the conditions we want to see
- For example: a ball won't ever be seen outside the box containing it (at lest, not for many frames)
- No forces / impulses are needed to enforce any such consistency conditions
- Which is what actually happens in the real world, but is more difficult to simulate robustly

Example of a positional constraint

«/ want all particles to stay above ground (their y is not negative) "

Enforce this constraint: trivial!
for (each particle i)
\{ if (p[i].y <0) $p[i] \cdot y=0$;
\}

Imposing constraints like this one is a first part of collision response. For re-bounces, impulses must still be added (see collisions).

```
Example of a positional constraint
(here, in 2D physics)
«/ want particles to stay
    inside a 2D box [0 - 100] x [0 - 100] »
```



```
Imposing constraints like this one is a first part of collision response. For re-bounces, impulses must still be added (see collisions).
```


Example of positional constraint: equidistance constraint

«Particles \boldsymbol{a} and \boldsymbol{b} must stay at a fixed distance \boldsymbol{d} »

${ }_{\text {I want that.... }}\left\|\mathbf{p}_{a}-\mathbf{p}_{b}\right\|=d$

Enforce equidistance constraints (assuming equal masses)

$$
\mathbf{p}_{a}
$$

if $\left\|\mathbf{p}_{a}-\mathbf{p}_{b}\right\|<d$

131

Enforce equidistance constraints: pseudo code

Vector3 pa, pb; // curr positions of a, b
float d; // distance (to enforce)
Vector3 v = pa - pb;
float currDist $=$ v.length;
v /= currDist; // normalization of v
float delta = currDist - d ;
pa += (0.5 * delta) * v;
$\mathrm{pb}-=(0.5$ * delta) * v;
(see later for the more general case)

Compare:

equidistance constraints vs. springs

- Similar
- they both mean:
some constant scalar parameter l these 2 particles "want to be" at this distance (not more, not less)
- but different
- equidistance constraint: - spring:
- applied during constraint enforcement
- directly affects positions
- models a rigid rod between the two particles
- of a given length
- sometimes called a "HARD" constraint
- applied during force evaluation step
- affects forces, therefore accelerations
- models a deformable spring between the two particles
- of a given length
- sometimes called a "SOFT" constraint
- A physic engine can combine them in one object!

Enforcing sets of constraints

- There are many constraints to impose: when you solve one \rightarrow maybe you break another!
- Simultaneous enforcement: computationally expensive
- Practical \& easy solution: just enforce them in cascade (similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
...but at most for N times! (reminder: our simulation is soft real-time)

Enforcing sets of constraints one after the other (in cascade)

- The whole loop for imposing the constraints happen in the constraint enforcement phase on one physics step!
- Notes about convergence:
- needed iterations (typically) few: e.g. $1 \sim 10$ (efficient!).
- if convergence not reached within a given number of steps: never mind, next frames will fix it (it's fairly robust)
- (it is never reached, if constraints are contradictory)
- Optimization (to reduce the number of needed iterations): solve the most unsatisfied constraints first
Problem: it's a sequential approach! $*$
- parallelized versions (similar to Jacobi solvers) are possible
- they have a worse convergence in practice (they require more iterations), but each iteration is faster

140

141

143

Enforcing a positional constraint:

(assuming for now all particles have same mass)

- Test: does the equality/inequality hold?
- If so: nothing to do!
- Else:
- All particles must be displaced a bit, so that it will
- Infinite ways to achieve this. Which one to pick?
- Answer: minimize the sum of squared displacements (with respect to current position)
- Find the minimizer by analytically solving simple math problems ("analytically" = in closed form = "with formulas")

Enforcing positional constraints

(assuming for now all particles have same mass)

- We want to enforce a constraint \mathcal{C} on particles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$ in positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}} \cdots$
- \mathcal{C} defined as an equality/inequality of $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots$:

$$
\mathcal{C}:\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots\right) \rightarrow\{\text { true }, \text { false }\}
$$

- We must apply the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}$ found by:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}, \cdots}{\operatorname{argmin}}\left(\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}+\left\|\overrightarrow{d_{\mathrm{b}}}\right\|^{2}+\left\|\overrightarrow{d_{\mathrm{c}}}\right\|^{2}+\cdots\right) \\
& \text { such that } \mathcal{C}\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{d_{\mathrm{a}}}, \mathbf{p}_{\mathrm{b}}+\overrightarrow{d_{\mathrm{b}}}, \mathbf{p}_{\mathrm{c}}+\overrightarrow{d_{\mathrm{c}}}, \ldots\right) \\
& \text { among all the choices that satisfy this, } \\
& \text { we want the one which minimizes this }
\end{aligned}
$$

Positional constraint example:

"please don't sink under a general plane"

- We want to enforce the constraint "particle a must be above a given constant plane "
- Given: position of the particle \mathbf{p}_{a} and its mass m_{a}
- A plane given by a point on it \mathbf{p}_{q} and its normal \hat{n}_{q}
- We need to apply the displacement $\overrightarrow{d_{\mathrm{a}}}$ found by minimizing:

$$
\begin{aligned}
& \frac{\operatorname{argmin}}{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}}\left(\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}\right) \\
& \text { such that }\left\|\left(\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{q}}\right) \cdot \hat{n}_{q}\right\|>0
\end{aligned}
$$

- And the solution (in closed form) is, trivially...
Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)
Vector3 v = pa - pq;
float currDist $=$ Vector3. $\operatorname{dot}(\mathrm{v}, \mathrm{n})$;
if (currDist < 0.0)
pa -= currDist * n; // just project!
else \{\} // constrain ok, nothing to do

More examples of possible positional constraints

- Preserve volume of some object: «Volume is $v_{\text {CONST }}$ "
- How to impose it:

1. Estimate current total volume v
2. uniform scale the entire object by factor $\sqrt[3]{v_{\text {CONST }} / v}$

- Fixed positions: «particle a stays in \mathbf{p}_{a} "
- the particle is "pinned" in position
- trivial to impose, but still useful!
- Angle constraints, e.g. $\boldsymbol{\alpha}<\boldsymbol{\alpha}_{\text {max }}$
- e.g., on joints: «elbows cannot bend backward»
- Coplanarity / collinearity
- «these N particles must stay on a line / on a plane»
- Non interpenetration
- part of collision handling - see collisions later

Position Based Dynamics (PBD)

summary

- A general approach for computing dynamics
- Ingredients:

1. Use Verlet integration on particles

- velocities are implicit
- changes in positions induce changes in velocities

2. Implement positional constraints on particles (e.g., equidistance constraint) to model things like:

- Rigid bodies
- Articulated / non rigid bodies
- Non penetration (maybe, add collision impulses, see later)

