
3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Changing the value of dt in Verlet
(whenever it’s not constant)

Problem:
if 𝑑𝑡 now changes to a new 𝑑𝑡′

then, all 𝐩௢௟ௗ must be updated to some 𝐩௢௟ௗ
ᇱ

Find 𝐩௢௟ௗ
ᇱ : 𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ
ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ

ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

current velocity 𝑣⃗
and position 𝐩௡௢௪

must not change

120

121

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 2

 We want to multiply 𝑣⃗ a factor 𝑐ୈ୅୑୔

 before applying accelerations

 We can do that using a more general formula for 𝐩௡௘௫௧

Velocity damping in Verlet

𝐩௡௘௫௧ = 1 + 𝑐ୈ୅୑୔ ⋅ 𝐩௡௢௪ − 𝑐ୢୟ୫୮ ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

e.g. 0.98
obtained as
(1-𝑑𝑡·𝑐ୈୖ୅ୋ)

 Velocity at next frame: 𝑣⃗ = (𝐩௡௘௫௧ − 𝐩௡௢௪)/𝑑𝑡

implicit

Velocity damping in Verlet
(geometric interpretation)

𝐩௡௘௫௧ = 1.98 ⋅ 𝐩௡௢௪ − 0.98 ⋅ 𝐩௢௟ௗ𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 2)

Equivalently,
𝐩௡௘௫௧ is an extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝑣⃗

𝑣⃗

Equivalently,
𝐩௡௘௫௧ is a different extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 1.98)

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢

𝑣⃗

0.98𝑣⃗

a bit shorter

123

124

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 3

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩௢௟ௗ = 𝐩௡௢௪

𝐩௡௢௪ = 𝐩௡௘௫௧

init
state

one
step

𝐩௡௢௪ ⟵ . . .

𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚

𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

Enforce constraints on (𝐩௡௘௫௧) 💡

Position Based Dynamics (PDB)

 A positional constraint is
an equality/inequality
involving the positions of particles.
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”,

or “steel bars won’t become shorter or longer than they are”
 We will see many examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles
 Thanks to Verlet: this displacement automatically causes

some appropriate update of the velocity!
 it’s not necessarily correct, but it’s plausible and robust

a formula
with ‘=‘ ‘>’ ‘<‘ etc.

💡

125

126

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 4

Verlet + Position Based Dynamics.
Advantages
 flexibility: different constraints can be used to model

many different phenomena
 Useful constraints are straightforward to define
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
 For example: a ball won’t ever be seen outside the box

containing it (at lest, not for many frames)
 No forces / impulses are needed to enforce any such

consistency conditions
 Which is what actually happens in the real world,

but is more difficult to simulate robustly

Example of a positional constraint

«I want all particles to stay above ground
(their y is not negative) »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

if (p[i].y < 0) p[i].y = 0;
}

Enforce this constraint: trivial!

127

128

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 5

Example of a positional constraint
(here, in 2D physics)

«I want particles to stay
inside a 2D box [0 – 100] x [0 – 100] »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Enforce this constraint: simple clamp!

1000

100

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

௔ ௕

௕

௔

௔ ௕

௕

௔

I want that…

129

130

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 6

Enforce equidistance constraints
(assuming equal masses)

if 𝐩௔ − 𝐩௕ < 𝑑

if 𝐩௔ − 𝐩௕ > 𝑑 ௕

௔

௕
௔

Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

assuming equal mass, we move each particle half the way
(see later for the more general case)

131

132

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 7

Compare:
equidistance constraints vs. springs

 Similar
 they both mean:

these 2 particles “want to be” at this distance (not more, not less)
 but different

 spring:
 applied during

force evaluation step
 affects forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affects

positions
 models a rigid rod

between the two particles
 of a given length

 sometimes called
a “HARD” constraint

 A physic engine can combine them in one object!

some constant scalar parameter 𝑙

Enforcing sets of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: just enforce them in cascade
(similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
…but at most for N times! (reminder: our simulation is soft real-time)

Constr.
1

Constr.
2

Constr.
N

...

133

134

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 8

Enforcing sets of constraints
one after the other (in cascade)

 The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step!

 Notes about convergence:
 needed iterations (typically) few: e.g. 1 ~ 10 (efficient!).
 if convergence not reached within a given number of steps:

never mind, next frames will fix it (it’s fairly robust)
 (it is never reached, if constraints are contradictory)
 Optimization (to reduce the number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi solvers) are possible
 they have a worse convergence in practice

(they require more iterations), but each iteration is faster

Compounds of particles
disguised as rigid bodies

PARTICLEPARTICLE

PARTICLEPARTICLE

PARTICLEPARTICLE

135

140

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 9

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box?
(rigid object)
In 2D a configuration of:
• 4 particles
• 6 equidistance constraints

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

141

142

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 10

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by
inertia)

even the system does not
(explicitly) handle rotations
or
angular velocities

(works in 3D as well!)

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

143

145

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 11

Enforcing a positional constraint:
(assuming for now all particles have same mass)

 Test: does the equality/inequality hold?
 If so: nothing to do!
 Else:
 All particles must be displaced a bit, so that it will
 Infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of squared displacements
(with respect to current position)

 Find the minimizer by analytically
solving simple math problems
(“analytically” = in closed form = “with formulas”)

Enforcing positional constraints
(assuming for now all particles have same mass)

 We want to enforce a constraint 𝒞 on particles a , b , c, …
in positions 𝐩a ,

𝐩b ,
𝐩c

…

 𝒞 defined as an equality/inequality of 𝐩a ,
𝐩b

, 𝐩c
, … :

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ found by:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

𝑑ୟ

ଶ
+ 𝑑ୠ

ଶ
+ 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

146

147

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 12

Positional constraint example:
“please don’t sink under a general plane”

 We want to enforce the constraint
“particle a must be above a given constant plane ”
 Given: position of the particle pa and its mass ma

 A plane given by a point on it pq and its normal 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ

𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain ok, nothing to do

148

149

3D Video Games
05: Game Physics - Dynamics - 3

2023-04-17

Marco Tarini
Università degli studi di Milano 13

More examples of possible
positional constraints

 Preserve volume of some object: «Volume is 𝑣େ୓୒ୗ୘ »
 How to impose it:
1. Estimate current total volume 𝑣

2. uniform scale the entire object by factor 𝑣େ୓୒ୗ୘ /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝐩ୟ »
 the particle is “pinned” in position
 trivial to impose, but still useful!

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶
 e.g., on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 «these N particles must stay on a line / on a plane»

 Non interpenetration
 part of collision handling – see collisions later

𝐩௕

𝐩௖

𝐩௔
𝛂

Position Based Dynamics (PBD)
summary

 A general approach for computing dynamics
 Ingredients:

1. Use Verlet integration on particles
 velocities are implicit
 changes in positions induce changes in velocities

2. Implement positional constraints on particles
(e.g., equidistance constraint) to model things like:

 Rigid bodies
 Articulated / non rigid bodies
 Non penetration (maybe, add collision impulses, see later)

150

151

