Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics

lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Enforcing a positional constraint: the general case with masses.

- Check: does the equality/inequality hold?
- If so, nothing to do!
- Else:
- All positions must be displaced a bit, so that it does
- Infinite ways to achieve this. Which one to pick?
- Answer:
minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses
- Find the minimizer by analytically solving simple math problems
("analytically" = in closed form = "with formulas")

Enforcing positional constraints in the

 general case: formal problem definition- We want to enforce a constraint \mathcal{C} on particles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$ in positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}$ and with masses $m_{\mathrm{a}}, m_{\mathrm{b}}, m_{\mathrm{c}}, \ldots$
- \mathcal{C} defined as an equality/inequality of $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots$:

$$
\mathcal{C}:\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots\right) \rightarrow\{\text { true }, \text { false }\}
$$

- We must apply the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}$ found by:

$$
\left.\begin{array}{l}
\underset{d_{\mathrm{a}}}{\operatorname{argmin}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}, \ldots \\
\text { such that } \mathcal{C}\left(m_{\mathrm{a}}\left\|\overrightarrow{\mathbf{p}_{\mathrm{a}}}+\overrightarrow{d_{\mathrm{a}}}\right\|^{2}+m_{\mathrm{b}}\left\|\overrightarrow{\mathbf{d}_{\mathrm{b}}}\right\|^{2}+m_{\mathrm{c}}\left\|\overrightarrow{d_{\mathrm{b}}}, \mathbf{p}_{\mathrm{c}}+\overrightarrow{d_{\mathrm{c}}}\right\|^{2}+\cdots\right)
\end{array}\right)
$$

Example:

the equidistance constraint

- To enforce the constraint "particles a and b must stay at distance L "
- input: current positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}$
- input: masses $m_{\mathrm{a}}, m_{\mathrm{b}}$
- We need to the displacements $\overrightarrow{\mathrm{d}_{\mathrm{a}}}, \overrightarrow{\mathrm{d}_{\mathrm{b}}}$ found by minimizing:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}}{\operatorname{argmin}}\left(m_{\mathrm{a}}\left\|\overrightarrow{\mathrm{~d}_{\mathrm{a}}}\right\|^{2}+m_{\mathrm{b}}\left\|\overrightarrow{\mathrm{~d}_{\mathrm{b}}}\right\|^{2}\right) \\
& \text { such that }\left\|\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{\mathrm{d}_{\mathrm{a}}}\right)-\left(\mathbf{p}_{\mathrm{b}}+\overrightarrow{\mathrm{d}_{\mathrm{b}}}\right)\right\|=L
\end{aligned}
$$

- And the solution (in closed form) is...

```
Equidistance constraints: solution for
non-equal masses
    Vector3 pa, pb; // curr positions of a,b
    float ma, mb; // masses of a,b
    float d; // distance (to enforce)
    Vector3 v = pa - pb;
    float currDist = v.length;
    v /= currDist; // normalization of v
    float delta = currDist - d ;
    /* solutions of the minimization: */
    pa += ( mb/(ma+mb) * delta) * v;
    pb -= ( ma/(ma+mb) * delta) * v;
```


Rigid-bodies as compounds of particles + constraints

- Interesting/rich/useful set of "emerging behaviors" (they just automatically happen) :
- rigid, deformable, jointed objects
- made of particles + hard constraints
- their angular velocities

- rotation around proper axis
- their barycenter
- their momentum of inertia
need to compute or store these
consequence of
constraints disallowing compenetration
- angular velocity is maintained
- somewhat believable bounces on "impacts"
- for more control: impact impulses can be added (see collisions)

Rigid-body as (particles + constraints) Challenges

- Approximations are introduced
- e.g.: mass is concentrated in a few locations
- Scalability issues
- many constraints to enforce, many particles to track
- Some of the info which is kept implicit is needed by the rest of the game engine
- and must therefore be extracted $;$
- example: the transform (position + orientation) of the "rigid body" is needed to render the associated mesh
- similarly: angular speed, barycenter pos, velocity...

Particles + constraint, or rigid bodies?

- Rigid-body based systems:
- explicitly compute dynamics for rigid bodies
- also store their current orientation + angular velocity
- update them (just like position + velocity)
- Particles-based systems with PBD:
- only compute dynamics for particles
- rigid (or deformable, or jointed) bodies as an emerging behavior
- Mixed systems:
- dynamically swap between the two representations for rigid bodies
- how to pass from one to the other?

182

