
3D Video Games
05: Game Physics - Dynamics
SANDBOX IN UNITY

2023-04-17

Marco Tarini
Università degli studi di Milano 1

3D video games

notes on the sand-box
coding done in class

Marco Tarini

Objective of this sandbox

Implement a PBD system
(particle based, with Verlet integration) on Unity
 Plan:

 do NOT enable the default Unity physics system
 instead, implement our ad-hoc physics “by hand”, by scripting
 note: in a normal project, there’s no good reason to do that!

 How to NOT enable physics in Unity:
 Just don’t add (or remove), to any GameObject,

any “RigidBody” component (implements dynamics) and
any “Collider” component (implements collision handling)

 we will still use the Graphics engine of Unity
 scene-graph support: GameObjects, their Transforms

152

153

3D Video Games
05: Game Physics - Dynamics
SANDBOX IN UNITY

2023-04-17

Marco Tarini
Università degli studi di Milano 2

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game-Object

 It is a C# class, with predefined methods used by the
rest of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called at fixed interval,

just before the hard-wired physics step
 Update() – called before rendering this object

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Our Particles and their behavior

 Our particle is a game-object
 an element of the scene graph (1 level)
 It’s rendered as a small sphere

 Its associated behavior class includes the fields:
 pNow , pOld (points): for Verlet dynamics

(note: “transform.position” is the current position used by
the rendering / the GUI)

 mass (scalar): constant
(“public”, so it is exposed in the GUI)

 drag (another scalar): % of speed lost per second (same)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

154

155

3D Video Games
05: Game Physics - Dynamics
SANDBOX IN UNITY

2023-04-17

Marco Tarini
Università degli studi di Milano 3

Implementation detail:
pNow VS transform.position
 For each particle, the current position

is already kept by unity as its transform.position :
 Reminder: it’s the translation/position component of the

global transformation
 (BTW it’s not really a field, but it pretends to be - C# property)
 Reminder: physical simulation always acts in world space
 That value used by the rendering engine, the GUI, etc.

 For clarity, we use a field pNow instead
but keep it in sync with transform.position
 at the beginning of each integration step:

pNow ← transform.position
 at the end:

transform.position ← pNow

FixedUpdate method of particles

 Basic Verlet integration occurs here
 Includes addition of any force

that depends only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 ground collision (“please stay above ground”)
 box collision (“please stay inside this 10x10 box”)

 Includes velocity dumping
 see dump computation in prev slides

156

159

3D Video Games
05: Game Physics - Dynamics
SANDBOX IN UNITY

2023-04-17

Marco Tarini
Università degli studi di Milano 4

Adding “sticks”

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering (just for the looks):
 A stick is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (so, in the Update() method)

its (global) transformation is computed anew,
so that the cylinder is scaled, rotated, and translated
to make it graphically connect the two particles

 This new transformation replaces the old at every frame
 (therefore, it doesn't matter where we place them in the

scene: they will teleport to the right location at each frame)

Adding “sticks”

 Fields:
 References to connected particles A and B

This is a public field: set them in the Unity GUI !
 Rest length (scalar)

This is automatically computed on Start
as the initial distance between particles A and B

 Methods:
 FixedUpdate: enforces the positional constraints, acting on

the position (transform.position) of the two particles
 See slides for how this is to be computed from their current

positions

160

161

3D Video Games
05: Game Physics - Dynamics
SANDBOX IN UNITY

2023-04-17

Marco Tarini
Università degli studi di Milano 5

Sand-box project: results.

 Combining multiple particles and sticks,
we construct meta-objects such as…
 Rigid objects
 TODO: ropes, pendulums

 Rigid objects exhibit a plausible…
 Angular velocity
 Angular momentum
 Corrent barycenter around which to rotate

(try assigning a different mass to a particle)
 Reaction of impacts with the ground / walls (bounces)

without having coded any of that

A limitation of our implementation
(can be fixed later)

 We are relying on Unity hard-coded mechanism to run the
FixedUpdates (and Start) methods for all scene objects
 Therefore, we have no control on the order in which they are run

 In particular, the positional constraints of the sticks are run
 only once per physics step
 either before, or after the Verlet integration step

 In theory, we want to enforce them
 just after swapping current and old positions
 and multiple times, or until convergence
 together with the collision of particles with ground etc

 Still, the simulation works with only small inconsistencies

162

163

