
3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Collision Handling

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

34

35

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 2

YES

Produce:
 a hit positions
 a hit normal

 orientation of the
impacted place

Collision?
«do any two things

overlap?»

NO

From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 a hit positions
 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

36

37

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 3

Collision detection

 The usual king of the concerns: efficiency
 Observation:
 almost 100% of the object pairs,

almost 100% of the times,
do NOT collide.

 for efficiency,
the «no-collision» case needs to be optimized

 «early reject» of the text

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

38

39

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 4

Geometric proxies

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, to be used in its place

 can be a much cruder approx.
than the 3D model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision proxy)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

40

41

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 5

Geometric proxies:
not only for collision detection, but also:

 physic engine
 extract data for collision response
 extract barycenter position

& moment-of-inertia matrix of rigid bodies
assuming uniform density (Ita.: peso specifico)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways to do that)

 3D sounds
 sound absorption in 3D sound propagation

Basically, for any other task except rendering:
internally, objects are their proxies.

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject»
optimization

An approximation
of the
collision detection

42

43

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 6

Geometric proxies: shapes

 Spheres
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Boxes

 aka AABB
 Generic Boxes
 Discrete Oriented Polytopes

 aka DOP
 Ellipsoids

 axis aligned or not
 Cylinders
 Convex polyhedrons
 Non-convex polyhedrons

 Meshes
 …

🤔 choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store them
 Behavior under transformations
 the ones we plan to use, e.g., isometries

 How good is the geometric approximation
 for the objects we will use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies …
 also, is it easy to compute / good is the collision data?

by algorithms

assets!
by artists

44

45

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 7

Geometry proxies:
Sphere

 easy to compute automatically
 only the approximatively optimal one

 tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐௫, 𝑐௬, 𝑐௭, 𝑟)

 collision test: trivial (against spheres or other things)
 how? exercise – including collision data computation

 can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

 approximation quality:
 it depends on the object (as usual)
 often, quite poor:
 e.g.: a head? A character? A house? A sword?

Which geometric proxy types
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection-test algorithms to be implemented :

quadratic with # of supported types

Type A

Type B

Type C

Type A Type B Type C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

46

47

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 8

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored as:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

Geometry proxies:
a half-space

 Trivial, but useful!
 e.g. for a flat terrain,

or a wall…

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

nො

48

49

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 9

Mini-exercise:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: nො
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

nො ȉ 𝐪 − 𝐩 =
nො ȉ 𝐪 − nො ȉ 𝐩 =
nො ȉ 𝐪 + 𝑘 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
nො

a 4D vector
representing the plane

𝑘 = −nො ȉ 𝐩
(minus distance of plane from origin)

nො

nො

nො

Geometry proxies:
«AABB»

Axis Aligned Bounding Box
 Consists of three interval

𝑚𝑖𝑛௫, 𝑚𝑎𝑥௫ × 𝑚𝑖𝑛௬, 𝑚𝑎𝑥௬ × 𝑚𝑖𝑛௭, 𝑚𝑎𝑥௭

 Concise to store
 Two 3D points: 𝑚𝑖𝑛௫, 𝑚𝑖𝑛௬, 𝑚𝑖𝑛௭ & 𝑚𝑎𝑥௫, 𝑚𝑎𝑥௬, 𝑚𝑎𝑥௭

 Easy to find the minimal AABB encapsulating a given set of points
 Easy to test for collision VS a point, or another AABB, etc

 (how?)
 Transforms:

 cannot be rotated
 But can be easily scaled / translated

As the name implies,
almost always
used as BOUNDING volume

Cartesian product

50

51

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 10

«AABB» : 2D example
(Axis Aligned Bounding… Rectangle)

AABB

𝑥

𝑚𝑎𝑥௬

𝑚𝑎𝑥௫

𝑥

𝑚𝑖𝑛௬

𝑚𝑖𝑛௫

Geometry proxies:
Box

 “Parallelepiped”
 non axis aligned
 generalized version

of AABB
 storage:

 a rotation +
 an AABB

 Can be freely transformed
 note: only if scaling is uniform

 Tests: still relatively easy (how?)

52

53

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 11

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-spaces
 Same as prev,

put in but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

54

55

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 12

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Colliders :)
 The most accurate approximations
 But, the most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (treat them as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

not worth it for
a Bounding Volume !

potentially concave

3D meshes for geometry proxies vs
3D meshes for rendering

 Proxy meshes are
 much lower res (e.g. < 102 faces)
 no attributes (no uv-mapping, no color, etc)

 based generic polygons, not just tris (as long as they are flat)

 closed, water-tight (inside != outside)

 sometimes: convex only
 completely different internal representation

(as a set of bounding planes)

see lecture on 3D models later

56

57

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 13

BSP-tree
(Binary Spatial Partitioning tree)

 A way to store a (convex, or concave) polyhedorn
 A hierarchical structure
 a binary tree
 root = all space, child-nodes = partition of parent
 each internal node is split by an arbitrary plane

 plane is stored at node, as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 each leaf: one bit: “inside” or “outside” the proxy
 tree is precomputed (and optimized) for a given

polyhedron
 a spatial query = traverse the tree from the top down

in 2D: a line

BSP-trees to encode
a Polyhedral proxy (Concave too)

IN

OUT

58

59

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 14

BSP-trees to encode
a Polyhedral proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

E

C

B

A

in front behind

F

Composite Geometry Proxies

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub

proxy
 Very expressive
 better approximation for many objects,

even with few proxies
 note: union of convex proxies can be

concave !
 Still quite efficient to store / test
 Very difficult to construct

automatically
 Open problem

60

61

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 15

Collision Proxy examples

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

Collision Proxy examples

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

62

63

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 16

Bounding Volume +
Collision Proxy

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

around
a more complex
Collision Object
approximating

the same object

note: intersect and collide
aren’t the same function here

YESNO
Done

Collision with
collider?

Done!
(early reject)

Collision with
bounding proxy?

NO

Bounding Volume +
Collision Proxy

YES

Produce collision data.
Collision response.

64

65

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 17

How to construct a geometry proxy
to be used as a collider?

 “Given an object representation M,
build a good collision proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially if we want to pick simpler

(more efficient) proxies
 such as compound of a few spheres, capsules, boxes

 especially if we want good approximations
 It’s often done manually by digital artists

Geometry proxies for colliders are assets !

How to construct a geometry proxy
to be used as a bounding volume?

 “Given an object representation M,
build a thigh bounding volume for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s difficult to find the optimal (smallest possible)
bounding volume automatically

 A lot easier to find a “good enough” bounding volume.
 For example, think about an algorithm to find

bounding volumes of type…
 AABB (trivial)
 Sphere – i.e. a “bounding sphere” (less trivial)
 Capsule (difficult!)

66

67

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 18

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 resource consuming

𝑡

𝑡 + 𝑑𝑡

COLLISION

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

COLLISION

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunneling»
 Can happen if:

- 𝑑𝑡 too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

NO COLLISION

aka

68

69

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 19

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «teleport the object in the safe position».
 it never left a safe position!
 it’s easier to prevent penetrations than to heal them

 Much more difficult to do
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, not practical to do in any other these
 and even then, only use when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a temporal interval)

Aka:aka

Dirgression: collision detection
in traditional 2D games

 A much easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support like sprite rendering)
 little need for proxy approximations for colliders
 good proxy for bounding volumes: sprite rectangle

NO COLLISION NO COLLISION COLLISION

in screen space

70

71

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 20

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

Collision detection: the broad phase

 So far, we have seen how to detect a collision
between one given pair of objects

 Problem: we don’t want to test every pair of objects!
 Idea: in a «broad phase», we quickly identify pairs of

objects that need testing
 Objects that are safely far from each other

are never even tested
 Only objects that are… “suspiciously close” must be tested

 Note: the board phase must be strictly conservative
 not ok: discard object pairs that actually collided,
 ok: test objects that didn’t actually collide

 Let’s see strategies to do so

72

73

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 21

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) spatial indexing structures

2) BVH – Bounding Volume Hierarchies

3) Sorting-based algorithms

Sorting based algorithms
Sweep and Prune (SAP)

AABB

AABB

AABB

AABB

AABB

AABB

𝑥

AABB

𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫

74

75

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 22

Sweep And Prune (SAP) strategy
(or “Sort and Sweep”)

1. Bound:
 Quickly find the AABB for each collider

(in its current rotation + translation)
 E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sort 𝑚𝑖𝑛௫ and 𝑚𝑎𝑥௫ of all AABB together
 Just adjust the sorting used in the previous frame
 It will be already almost sorted! To exploit this…
 use an incremental sorting algorithm, such as quicksort

3. Sweep the sorted intersections, from smaller to larger
 Quickly detect intersecting intervals in 𝑥 (how?)

4. Prune: among AABB intervals, ignore the ones
that don’t also intersect in both 𝑦 and 𝑧
 Test the other pairs for collision

2𝑟

2𝑟

only
O(𝑛 log 𝑛)

Even
faster!
O(𝑛)

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) spatial indexing structures

2) BVH – Bounding Volume Hierarchies

3) Sorting-based algorithms

76

77

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 23

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m in this 3D pos. Which object(s) are around me, if any?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap!
 for moving parts of the scene, an update! Consuming!
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures:
 Regular Grid
 kD-Tree
 Oct-Tree

 and its 2D equivalent: the Quad-Tree
 BSP Tree

ba

fedc

jihg

lk

ponm

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

78

79

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 24

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

80

81

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 25

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

Quad-Tree
(in 2D)

the (2D) world

82

83

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 26

Oct Tree
(same, for 3D)

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits into all dimensions at once

X and Y in 2D
X and Y and Z in 3D
(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough

objects
(or limit level reached)

84

85

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 27

BSP-tree
Binary Spatial Partition tree

the world

BSP-tree, this time
as a spatial indexing structure

 root = all scene,
 child-nodes = partition of parent (as usual)
 spatial query = traverse the tree from the top down (as usual)
 a binary tree (so far, same as as kD-trees)
 each node is split by an arbitrary plane

 plane is stored at node, as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 planes can be optimized for a given scene
 e.g., to go for a 50%-50% object split at each node
 e.g., to leave exactly one object at leaves
 Pro:

they can be optimized for optimal queries: better query time!
 Con:

must be optimized during construction: worse construction time!

in 2D: a line

86

87

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 28

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) spatial indexing structures

2) BVH – Bounding Volume Hierarchies

3) Sorting-based algorithms

BVH
Bounding Volume Hierarchy

88

89

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 29

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

90

91

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 30

BVH
Bounding Volume Hierarchy

 We can use the hierarchy already defined by the
scene graph
 instead of a spatially derived one

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick!
 bottom-up

 using it:
 top-down: visit (how?)
 note: it’s not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

Broad phase strategies: Recap
 Regular Grid

 parallelizable construction
 constant time access (best!)
 huge in RAM space – OR hashing (extra cost)
 requisite: volume of playfield must be known in advance, cannot be too large

 kD-tree, Oct-tree, Quad-tree : as above but…
 more compact in RAM / can deal with larger playfields
 more complex, not as parallelizable construction

 BSP-tree
 optimized splits! best performance when accessed
 optimized splits! more complex construction / update
 good candidate for broad-phase of static parts of the scene?
 (also, the perfect structure to model (general) Polyhedral Geometric Proxies)

 BVH
 can exploit existing scene hierarchy (scene graph)
 non necessarily very efficient to access (excessive tree depth)
 good candidate for intermediate phase of dynamic parts of the scene?

 SAP
 / N log N to construct, but faster to update
 Requisite: objects cannot be too large (e.g. 3D model of a room / a cave / etc)
 good candidate for broad phase of dynamic parts?

92

93

3D Video Games
06: Game Physics - Collisions 2/2

2023-04-27

Marco Tarini
Università degli studi di Milano 31

Physics Engine:
an implementation issue for GPU
 Task: Dynamics

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection
 non-trivial data structures, hierarchies, recursive algorithms, sorting…
 hugely variable workflow

 e.g.: quick on no-collision, more work to do when the rare collisions occur
 difficult to parallelize: CPU
 but the outcome affects the other two tasks (e.g., creates constraints)

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

End of Game Physics part.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

94

95

