
3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 1

3D video games

Models for Games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

1

2

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 2

In games: “Low-Poly” models
(low resolution meshes)

Metal Slug (1996, Nazca Copr), on Neo Geo (SNK)

Solomons’s key
(1986, Temco)
on Z80

reminder:
during the ’80s – early ‘90s,
the principal asset in games
consisted in
sprites / tilemaps authored
by pixel artists ...

3

6

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 3

Triangle Meshes
The visual appearance of 3D objects

 Data structure for modelling 3D objects
 GPU friendly
 Resolution = number of faces
 (Potentially) Adaptive resolution

 Used in games to represent the visual appearance
of 3D objects
 at least, the ones which can be represented by their surface
 most solid objects (rigid or not)

 Mathematically: a piecewise linear surface
 a bunch of surface samples “vertices”

connected by a set of triangular “faces”
attached side to side by “edges”

Triangle Mesh
(or simplicial mesh)

 A set of adjacent triangles
faces

vertices

edges

7

8

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 4

Mesh:
data structure
A mesh is made of
 geometry
 The vertices, each with pos (x,y,z)
 It’s a sampling of the surface

 connectivity or topology
 Faces connecting the vertices

 Triangle mesh: faces are triangles
(what the GPU is designed to render!)

 (pure) quad mesh: faces are quadrilateral
 Quad dominant mesh: most faces are quadrilateral
 Polygonal mesh: faces are polygons (general case)

 attributes
 Ex.: color, material, normal, UV, …

Mesh: geometry

 Set of vertices
 A position vector (x,y,z) for every vertex
 Coordinates, by definition, are given in Local space!

V2

V3

V5

V4

V1

9

10

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 5

Mesh: connectivity (or topology)

 Faces: triangles connecting vertices
 More in general, polygons,
 connecting triplet of vertices
 just as, in a graph, nodes are connected by edges

V2

V3

V5

V4

V1

T1

T2

T3

Mesh: attributes

 Any quantity that varies over the surface
 sampled at vertices, and interpolated inside triangles

V2

V3

V5

V4

V1

T1

T2

T3

RGB3

RGB2

RGB5

RGB4

RGB1

11

12

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 6

Mesh as a data structure:
“soup of triangles”

 Simply, a big array of triangles
 Each triangle stored as: a sequence of 3 vertices
 Each vertex stored as:

its x,y,z coordinates + attributes
 Problem: data replication
 Not memory efficient
 Inconvenient to update

(e.g., to animate)
 Seldomly used

most faces are adjacent
to each other
(adjacent faces share
the same vertices)

Mesh as a data strucuture:
indexed meshes

 array of vertices
 Each vertex stored as

 x,y,z position (aka the “geometry” of the mesh)
 attributes: (all vertices, the same ones)

any data saved on the surface: e.g. color

 array of triangles
 the “connectivity» (or, “topology”) of the mesh

 Each triangle stored as
 triplet of indices (referring to a vertex in the array)

 The two arrays can be seen as tables

we can consider
positions as

attributes too

13

14

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 7

An indexed mesh in GPU ram =
two buffers

V2

V3

V5

V4

V1

T1

T2

T3

Wedge
3:

Wedge
2:

Wedge
1:Tri:

V2V1V4T1

V5V2V4T2

V3V2V5T3

BGRZYXvert

b1g1r1z1y1x1V1

b2g2r2z2y2x2V2

b3g3r3z3y3x3V3

b4g4r4z4y4x4V4

b5g5r5z5y5x5V5

GEOMETRY + ATTRIBUTES

CONNECTIVITY

Mesh resolution

 Defined as the number of faces
 or vertices, equivalent because typically #F ≈ 2 ∙ #V)

 Rendering time is linear with resolution
 therefore, in games, resolution is kept small
 aka. «low-poly» models

 Resolution can be adaptive:
 denser vertices & smaller faces in certain parts
 sparser vertices & larger faces in other parts

 Resolution of typical models increases with time
 e.g. 1990s: 105 △ is hi-res
 2000s: 1010 △ is hi-res

15

16

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 8

Resolution increases over time

800 △ Unreal Tournement
(1999)

Unreal Tounement 2K3
(2002)

3000 △

Unreal Tournament 3
(2007)

4,500 △
weapon this

12,000 △

Resolution increases over time

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

19

21

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 9

Mesh attributes: in general
(valid for all attributes)

 Any properties stored on the mesh,
varying on the surface
 Can be made of vectors, versors, or scalars

 Stored at each vertex
 Each vertex of a mesh = same collection of attributes

 It’s interpolated inside the faces
 Linear interpolation:

uses barycentric coordinates (see next slides)
 Note: by construction, in indexed meshes

attributes are C0 continuous across faces
 but C1 discontinuous across faces
 and C∞ inside faces

Interpolation of vertex attributes
inside mesh triangles 1/2

𝐩ଶ

𝐩ଵ

𝐩଴

𝐪

 A triangle 𝐓
with vertices 𝐩଴, 𝐩ଵ, 𝐩ଶ

 For every point 𝐪 in 𝐓
there are (unique!)
𝑘଴, 𝑘ଵ, 𝑘ଶ

with 𝑘଴ + 𝑘ଵ + 𝑘ଶ = 1
such that

𝐪 = 𝑘଴ 𝐩଴ + 𝑘ଵ 𝐩ଵ + 𝑘ଶ 𝐩ଶ

 𝑘଴, 𝑘ଵ, 𝑘ଶ are called the
barycentric coordinates of 𝐪 in 𝐓

22

23

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 10

Interpolation of vertex attributes
inside mesh triangles 1/2

per vertice

𝐩ଶ

𝐩ଵ

RGB2

RGB1

RGB0

𝐩଴

𝑘଴ 𝐩଴ + 𝑘ଵ 𝐩ଵ + 𝑘ଶ 𝐩ଶRGB0 RGB1 RGB2

𝐪

 Now assign
three attributes to the three
vertices

 A point 𝐪 in 𝐓
with baricentric coodinates
𝑘଴, 𝑘ଵ, 𝑘ଶ

is implicitly assigned
the attribute

 Position
(aka the “geometry” of the mesh)

 Normal

 Texture Coordinates
(aka the “UV-mapping” of the mesh)

 Tangent Direction

 Bone links
(aka the “skinning” of the mesh)

 Color

Which mesh attributes
are used in games: a summary (with spoliers)

see lecture on
animations

(later)

see lecture on
textures
(later)

see lecture on
normal maps

(later)

in
local

space!

24

25

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 11

Which mesh attributes
are used in games: a summary (with spoliers)

 Normal
 used for dynamic re-lighting

 Texture coordinates
 aka the “uv-mapping” of the mesh
 used for texture mapping

 Tangent direction
 used for normal mapping
 used for anisotropic lighting effects

 Bone links
 aka the “skinning” of the mesh
 used for skeletal animation

 Color
 used for baked lighting (e.g. ambient occlusion)
 used for «base» («diffuse») color (RGB)

SEE TEXTURES LATER

SEE TEXTURES LATER

SEE ANIMATIONS LATER

SEE RENDERING LATER

SEE RENDERING LATER

SEE RENDERING LATER

Mesh as tables

 Position
 Normal
 Color
 Texture Coordinate
 Tangent Direction
 Bone links

W3:W2:W1:Tri:

T0

T1

T2

T3

T4

T5

T6

T7

BzByBxTzTyTxVUABGRNzNyNxZYXvert

V0

V1

V2

V3

V4

GEOMETRY + ATTRIBUTES

CONNECTIVITY

26

27

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 12

Mesh attributes: colors

 In games, colors on 3D models are usually
determined by textures (not by mesh colors)
 reason: more resolution in signal

 Per vertex colors can be used…
 To cheaply add variations models

 Red guards, blue guards

 To bake lighting
 e.g. baked per-vertex ambient occlusion see rendering later

 To dynamically recolor mesh parts
 e.g. redden the tip of a sword which is blood soaked
 e.g. accumulate dirty

 …and more

SEE RENDERING LATER

Mesh attributes: normals

 A versor
 Representing the surface orientation
 Main use: lighting computation
 Can be computed

automatically from
geometry...

 But it is a part of
the mesh assets:
 the artist is in control of

which edges are soft
and which are hard

28

29

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 13

Mesh attributes: normals

 Technically, mesh faces are flat
 the normal is constant over a face
 the normal is discontinuous across faces

(each mesh edge is “sharp”)

 Usually, that’s not the surface we intend to represent
 The flatness is just an artifact (a defect) of the mesh discretization

 By using a continuously varying normal
(the per-vertex normal interpolated inside faces),
the rendered images gives the illusion of a smooth, curved
surface
 which is (usually) what we want to represent

 But if we want, can we still represent “hard” (sharp) edges
 With vertex seams: see below

Mesh attributes: normals

if «real» normals
where used

(«flat shading»)

Using interpolated
per vertex normals
(smooth shading)

Note: normals are made visible to our eyes due to lighting
(computation of how light reacts with the surface)

30

31

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 14

Hard edges (aka sharp edges)
(aka “creases”)

 Edges where the normal is not continuous .

 How to encode (C0) a discontinuity in any attributes?

Soft edges:

Red edges
are hard

answer:

Vertex seams

 Vertex seam = two coinciding vertices. in xyz
 different attributes assigned to each copy

a literal
“seam”

32

33

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 15

Vertex seams
 A way to encode any

attribute discontinuity
 Price to be paid:

a little bit of data replication…

Wedge 3:Wedge 2:Wedge 1:Tri:

410T0

024T1

635T2

NzNyNxZYX

𝑛𝑧𝟎𝑛𝑦𝟎𝑛𝑥𝟎𝑝𝑧𝟎𝑝𝑦𝟎𝑝𝑥𝟎V0
𝑛𝑧𝟏𝑛𝑦𝟏𝑛𝑥𝟏𝑝𝑧𝟏𝑝𝑦𝟏𝑝𝑥𝟏V1
𝑛𝑧𝟐𝑛𝑦𝟐𝑛𝑥𝟐𝑝𝑧𝟐𝑝𝑦𝟐𝑝𝑥𝟐V2
𝑛𝑧𝟑𝑛𝑦𝟑𝑛𝑥𝟑𝑝𝑧𝟐𝑝𝑦𝟐𝑝𝑥𝟐V3
𝑛𝑧𝟒𝑛𝑦𝟒𝑛𝑥𝟒𝑝𝑧𝟑𝑝𝑦𝟑𝑝𝑥𝟑V4
𝑛𝑧𝟓𝑛𝑦𝟓𝑛𝑥𝟓𝑝𝑧𝟑𝑝𝑦𝟑𝑝𝑥𝟑V5
𝑛𝑧𝟔𝑛𝑦𝟔𝑛𝑥𝟔𝑝𝑧𝟒𝑝𝑦𝟒𝑝𝑥𝟒V6

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

= = =

= = =

Rendering of a Mesh
in a nutshell

 Load…
 get required data ready on GPU RAM

 Geometry + Attributes table
 Connectivity table
 Textures
 Shaders
 Parameters / Settings

 …and Fire!
 send the “Draw-call” to the GPU
 using an API

THE MESH

THE “MATERIAL”

34

35

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 16

Simplified architecture of PC with Video Card

36

BUS

CPU

ALUs

RAM
(main)

Disk

Video Card

…Internal bus
(of video card)

VRAM
(video RAM)

GPU
ALUs

…

Rendering of a Mesh
in a nutshell

 The algorithm to render a mesh (in games)
is based on rasterization
 It is outside the scope of this course. See CG course.
 In brief, three phases in cascade:

each vertex is projected on screen (“transform”),
(find where the vertex will be seen on the screen)

then each triangle is rasterized (converted into pixels)
then each pixel is processed (find the final color)

 For our purposes, rendering a mesh means just:
load all required data on the card on the GPU and
send the command to render it (the “draw call”)
 data includes the mesh itself (the two tables)
 plus the current transformations (from local space to view space)
 plus data describing the view: the “material”, including textures

Might change in
the future?

PER PIXEL PHASE

PER TRIANGLE PHASE

PER VERTEX PHASE

36

37

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 17

Rendering of a Mesh
in a nutshell
 A few things to know:

 It is a strongly parallel task
(all vertices, all triangles, all pixels can be processed in parallel)

 The entire procedure is implemented in the GPU
 It’s order-independent: we can draw mesh in any order we like.

The final result is the same
 Time cost:

O(number of vertices) = O(number of faces)
but also, O(number of covered pixels) --- so the slowest of the two

 The rendering procedure includes: animations (see later), lighting
 Because it’s GPU-implemented, many things are hard-wired

 The data structures: indexed meshes (or triangle soup)
 (Note: only triangle-shaped faces can be rendered – not quads/etc)
 The interpolation of attributes inside faces

 There’s a bit of customizability because GPU can be programmed
 Both the per-vertex phase (projection) and the per-pixel phase (lighting)
 “Shader” = custom program

Exception:
semi-transparent

“see through”
objects

Rendering & Scene graph

 Rendering APIs encode transforms as a 4x4 matrix
 reason: it is a more flexible, can also express perspective transforms

 To render an object:
 Combine its Transforms from Object-space to Camera-space

(“model-view transform” – in CG terminology)
 Convert it into a 4x4 matrix
 Use it during the rendering of the object
 Note: from world to camera (“view matrix”) can be computed and

used for all objects

 The model-view matrix is applied to each vertex
 In the per-vertex processing
 Combined with the “projection matrix” (from camera space to screen

space” is called “model-view-projection” matrix)

38

39

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 18

Rendering
transforms

T0 T2

T3 T4 T5 T6 T3 T4 T5 T6

world

camera

T8

for this object,
the model-view

transform is
(T଼)ିଵ ȉ T଴ ȉ Tଷ

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

40

43

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 19

Life of a mesh in a game engine

 Import (from disk)
 Optionally, simple Pre-processing
 e.g.: Compute Normals (if needed, i.e. rarely)
 e.g.: Compute Tangent Dirs
 e.g.: Bake Lighting (sometimes)

 Render (each frame)
 GPU based
 Meaning: mesh be loaded in GPU-ram first

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
GPU

Object

Memory Management
(during game execution)

DISK CENTRAL RAM GPU RAM

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

44

45

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 20

Mesh GPU Object
(on Graphic Card)

 Buffers storing the mesh
 GPU APIs call them: Vertex Buffer Object or Vertex Arrays

 They are stored in GPU RAM
 The scarcest one !

 Ready to render!
 Choices for a Game Engine:
 storage formats, including precisions
 trade-off between storage cost / accuracy
 e.g.

 color? 8 bit per channel
 position? 16 bit per coordinate

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

46

47

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 21

Mesh
as an asset

 A file of a given format
sitting on the disk

 Choices for the game engine:
 which formats(s) to import?

 proprietary, standard…
 storing which attributes?

 Issues:
 storage cost
 loading time

LetterL.off

Example of file format for indexed
meshes: OFF format

1 5 1
0 5 1
4 3 2 1 0
4 5 4 3 0
4 6 7 8 9
4 6 9 10 11
4 0 1 7 6
4 1 2 8 7
4 2 3 9 8
4 3 4 10 9
4 4 5 11 10
4 5 0 6 11

OFF
12 10 40
0 0 0
3 0 0
3 1 0
1 1 0
1 5 0
0 5 0
0 0 1
3 0 1
3 1 1
1 1 1

vertices

faces # edges

x,y,z
2nd
vertex

1st face:
4 vertices:
with indices
3, 2, 1 and 0

index 0

index 3

index 2
index 1

48

49

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 22

File formats for meshes
(a Babel tower!)

3DS - 3D Studio Max file format

OBJ - Another file format for 3D objects

MA, MB - Maya file formats

3DX - Rinoceros file format

BLEND - Blender file format

STL - Very used for 3D Printing

FBX - Autodesk interchange file format

X - Direct X object

SMD - good for animations (by Valve)

MD3 - quake 3 vertex animations

DEM - Digital Elevation Models

DXF - exchange format, Autodesk's AutoCAD)

FIG - Used by REND386/AVRIL

FLT - MulitGen Inc.'s OpenFlight format

HDF - Hierarchical Data Format

IGES - Initial Graphics Exchange Specification

IV - Open Inventor File Format Info

LWO, LWB & LWS - Lightwave 3D file formats

MAZ - Used by Division's dVS/dVISE

MGF - Materials and Geometry Format

MSDL - Manchester Scene Description Language

3DML - by Flatland inc.

C4D – Cinema 4D file format

SLDPTR - SolidWork "part"

WINGS - Wings3D object

NFF - Used by Sense8's WorldToolKit

SKP - Google sketch up

KMZ - Google Earth model

OFF - A general 3D mesh Object File Format

OOGL - Object Oriented Graphics Library

PLG - Used by REND386/AVRIL

POV - “persistence of vision” ray-tracer

QD3D - Apple's QuickDraw 3D Metafile format

TDDD - for Imagine & Turbo Silver ray-tracers

NFF & ENFF - (Extended) Neutral File Format

VIZ - Used by Division's dVS/dVISE

VRML, VRML97 - Virtual Reality Modeling Language (RIP)

X3D – attempted successor of VRML

PLY – introduced by Cyberware – typical of range-scanned data

DICOM – by DICOM – typical of CAT-scan data

Renderman – data for the homonymous renderer

RWX - RenderWare Object

Z3D - ZModeler File format

etc

Most used mesh file formats
(most used in games)
.OBJ (wavefront)

max diffusion
 indexed, normals , uv-mapping
 no colors (only material index for face)
 no skinning or animations

.SMD ()
 Skeletal animation + skinning
 normals , uv-mapping
 no indexed!
 no colors

.MD3 (Quake, IDsoft)
 vertex animations, normals
 no colors

.PLY (cyberware)
 customizable
 “academic”

.3DS ()
 YES: colors, uv-mapping,

indexed, materials, textures…
 NO: normals
 limited by vertex number (64K)

.DAE (collada: +)
 complete
 Born for being interchanged
 open standard
 Almost impossible to parsing it completely

.FBX ()
 complete, with animations
 complex, hard to parse

. GLFW (opernsource)
 very complete, and customizable
 includes animations, etc

simple complex

m
ostcom

m
on

lesscom
m

on

51

52

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 23

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

Mesh Object
(in RAM)

 A (C++ / Javascript / etc) structure
in main RAM

 Choices for a game engine:
 which attribute to store?
 storage formats… (floats, bytes, double…)
 which preprocessing to offer

(typically, at load time)

53

54

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 24

How to represent a mesh?
(which data structures)

 Indexed mode in C++ :
class Vertex {

vec3 pos;
rgb color; /* attribute 1 */
vec3 normal; /* attribute 2 */

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> verts; /* geom + attr */
vector<Face> faces; /* connectivity */

};

(2)

(1)

v3

v1

v2

Computing normals
from geometry

(1) compunte
normals of faces

(2) compute
normals of vertices

e1

e2

e1×e2

nො଴

nොଵ

nොଶ nොଷ

nොସ

nොହ

nො୴ =
nො଴ + ⋯ + nො௞

nො଴ + ⋯ + nො௞

55

58

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 25

Mesh processing:
(or, more in general, Geometry Processing)

 The algorithm above
(for the computation of per vertex normal)
is a tiny example of processing done over a mesh

 Mesh processing: the discipline of creating,
transforming, computing meshes
 inputs and/or outputs are meshes

 Part of, geometry processing:
 when the input and output are other data structure for

3D models
 See CG course for a very brief overview

Mesh processing:
(or more in general Geometry Processing)

 A good introduction
to
mesh processing

59

60

3D Video Games
08: Meshes in Games
Part 1/2

2023-05-04

Marco Tarini
Università degli studi di Milano 26

Libraries for mesh processing

+

VCG-Lib

RWTH ()

computational geometry
algorithms library

vision and
computer graphic library

INRIA ()CNR ()

simple geometry
processing library

libigl

NYU ()

Mesh processing:
typical tasks for the game industry

 Poly reduction / Retopology / Simplification
 e.g. LOD construction
 e.g. transition from (initial) hi-res to (final) low-poly

 Light baking
 Light precomputation
 e.g.: Ambient Occlusion

 U-V map construction
 parametrization / unwrapping

 Texturing
 creation of different types of textures

 Rigging / Skinning / Animation
 to animate

LATER

LATER

LATER

LATER

61

62

