08: Meshes in Games

Part 2/2

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics OOO +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models D
lec. 7: Game Textures \bigcirc
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
63

08: Meshes in Games

Part 2/2

68

69

08: Meshes in Games

Part 2/2

70

Mesh:

authoring

- Task of the 3D modeller
- A type of digital artist

- Popular 3D modeling approaches:
- Manual low-poly modelling
- e.g. with wings3D
- Subdivision surfaces
- e.g. with blender
- Digital sculpting
- e.g. with Z-brush

Mesh authoring (aka 3D modelling): a few applications
 used in classroom demos

- 3D Studio Max (autodesk), Maya (autodesk) ,
Cinema4D (maxon)
Lightweight 3D (NewTek),
Modo (The Foundry) , ..
- all-purpose, powerful, complete
- Blender
- the same, plus open-source and freeware (compare: Gimp VS. Adobe Photoshop for 2D images)
- MeshLab
- open-source, big collection of geometry processing algorithms ..
- AutoCAD (autodesk), SolidWorks (SolidThinking)
- for CAD
- ZBrush (pixologic)
(+ Sculptris alpha),
Mudbox (autodesk)
- Sculpting (inclusing texturing)
- Wings3D
- low-poly modelling (\& subdivision surfaces) open-source, small, specialized
- [Rhinoceros]
- parametric surfaces (NURBS)
- FragMotion
- small, specialized on animated meshes
- + a many more for specific contexts
- editing of human models, of architectural interiors, environments, or specific editors for game-engines, etc...

Note: during creation, the meshes can be polygonal instead of triangle based, but is simple to decompose any polygon into triangles
E.g. this can be done by the game engine as a simple preprocessing.

3D Video Games

08: Meshes in Games

Part 2/2

75

76

08: Meshes in Games

Part 2/2

3D mesh authoring techniques:

subdivision surfaces

- Subdivision step:
an algorithm that operates on a mesh and obtains a higher resolution, smoother mesh
- Can be iterated

77

78

08: Meshes in Games

Part 2/2

3D mesh authoring techniques: subdivision surfaces

- Many subdivision algorithms (schemas) exists
- each with its own properties
- Produces clean, regular meshes
- Excellent for smooth, curved,
famously pioneered
by movie industry
(not games):
organic looking objects

79

Subdivision surfaces as a tool...

- ...to encode smooth surfaces
- Idea: we encode the control mesh to represent the limit surface
- use in games: rendering (now, rare - but popular around 2015)

1. keep control mesh in GPU ram
2. let 1-3 subdivision steps happen during rendering

- ...to author 3D meshes
- idea: alternate (low-poly) editing and subdivisions steps
- at first steps: edit global shape
- at last steps: edit minute details
- use in games: during asset creation, by artists

08: Meshes in Games

Part 2/2

Subdivision surfaced

as way to define (curved) surfaced

- Modeler creates a low-poly mesh, the "control mesh"
- control mesh: piecewise linear (i.e., flat) surface
- The control mesh is subdivided (in theory ∞ times) and a "limit surface" is obtained
- limit surface: curved \& smooth surface
- The control mesh is a representation of the limit surface
- note: the subdivision steps are only performed on the fly, during rendering
- the more step are done, the better the limit surface is approximated

81

Subdivision surfaces as a mesh authoring tool

1. Create a coarse mesh with a very approx. shape

- e.g., using low-poly modelling

2. Apply subdivision step

- a higher resolution model

3. Re-edit results

- Retouch all the smaller parts

4. Goto 2 , until good final result

08: Meshes in Games

Part 2/2

84

Example of subdivision schema:

"Butterfly" (used for tri-meshes)

- It's a "1-to-4 schema"
in a subdivision step, each triangle is split into 4 by adding one vertex in each original edge

For more info, see Computer Graphics course

08: Meshes in Games

Part 2/2

Subdivision surfaces in general

- A step typically increases resolution by a factor x4
- The geometry of the subidvided mesh (3D points) is computed according to a formula of the pos of their neighbors.
- In some schemas (called interpolative), the old vertices are kept at the same positions
- In other schemas (called approximative), old vertices are kept but moved into a new position
- In other schemas (called dual) older vertices aren't kept
- Most created vertices are regular

08: Meshes in Games

Part 2/2

An example with Catmull Clark

91

Some common subdivision schemas

- Doo-Sabin
- operates on any polygonal mesh
- produces polygonal meshes
- Loop
- 1-to-4 scheme for triangle meshes (only)
- Butterfly
- 1-to-4 scheme for triangle meshes (only)
- Catmull-Clark
- operates on any polygonal mesh
- produces quad-meshes
- traditionally, movie-industry favorite
- a recent trend in games: use during mesh rendering

08: Meshes in Games

Part 2/2

3D Mesh authoring: approaches

- Popular 3D modeling approaches:
- Direct low-poly modelling
- e.g. with wings3D
- Subdivision surfaces
- e.g. with blender
- Digital sculpting
- e.g. with Z-brush,
(or Sculptris Alpha)

97

98

08: Meshes in Games

Part 2/2

99

08: Meshes in Games

Part 2/2

101

08: Meshes in Games

Part 2/2

Sources for 3D models:

3D acquisition

- 3D scanning
- A.k.a. automatic 3D model acquisition
- Lot of different technologies
- Laser scanners
- Time of flight
- Structured light (kinect)

Different characteristics

- Results quality
- Noise / resolution
- Automatism
- Invasiveness
- Markers? Powder?
- Real time? (kinect)
- Price
- Max object dimension
- (full body scanner?)

08: Meshes in Games

Part 2/2

Notes about mesh resolution

- all costs: linear on the triangles number
- in memory (disk, CPU RAM, GPU RAM)
- in time (rendering, loading, etc)
- (and, linear with \# of vert. with \# triangles)
- (rule of thumb: K verts $\rightarrow 2 \mathrm{~K}$ tris)
- reminder: possible adaptive resolution
- higher-res in some parts
- lower-res in others

Rendering quality

 and resolution```
 performance
```



3D Video Games

## 08: Meshes in Games

Part 2/2


107


## LoD pyramids (Level Of Detail)

- Goal:
- decrease the geometry budget (total number of vertices)
- ideal: size of triangles in screen space (in pixel): constant
- importance / geometrical complexity being the same
- Task: determining the level to use (dynamically, at runtime)
- depending on observer distance
- and/or, depending on rendering workload
- e.g.: rendering is lagging $\Rightarrow$ decrease LoD computed from
- this is task of the rendering engine)
- Task: LOD creation or "LOD-ding" (during asset creation)
- starting from LOD-0 (higher-res)
- manual, or automatic (see later on), or assisted (mixed)
- often manual, for very coarse LODs
- note: sometimes "LoD 0" is used only in special cases
- e.g., for cut-scenes



## 08: Meshes in Games

## Part 2/2

## LoD pyramids: which level to use

- Basic strategy: use a fixed LoD for each interval of distance (from camera)
- © popping artefacts!
- to mitigate it: used different thresholds to increase and to decrease the LoD
thresholds to $\Downarrow$ decrease $\Downarrow$ the LoD level (go higher res):

| LoD 0 | LoD 1 | LoD 2 | LoD 3 | LoD 4 |
| :--- | :---: | :---: | :---: | :---: | culled

0
thresholds to 介increase介 the LoD level (go lower res):

| LoD 0 | LoD 1 | LoD 2 | LoD 3 |
| :--- | :---: | :---: | :---: |
| 0 |  |  |  |

112


113

## 08: Meshes in Games

Part 2/2

## Poly-reduction

(aka mesh simplification, mesh coarsening)

- Different approaches are studied in Geometry Processing.
- Adaptive or not
- use more triangles where needed (ex. not in flat parts)
- or not
- Maximum error introduced:
- measured and/or limited
- or not
- Topology:
- kept
- or not
- Streamable
- Possible
- or not


115

## New hi-res mesh formats

- Nanite (EPIC GAMES)
- Micro-Meshes (NVIDIA)

Very different internal structures, common features:

- Cheaper per-triangle VRAM cost
- Compressed, but
- on-the-fly decompression during rendering ("geometry augmentation")
- Cheaper per-triangle rendering cost
- Micro-Meshes: intended for ray-tracing too
- Multiresolution, i.e., intrinsic LODs
- Can decide on the fly which level of detail show
- Nanite: LOD level varies across mesh
- Reduced need for UV-maps (see next lecture)


117

## 08: Meshes in Games

## Part 2/2



118

New hi-res mesh format 1/2:

## NANITE

- A tree of patches
- 1 patch = small optimized mesh



## 08: Meshes in Games

Part 2/2



Part 2/2


New hi-res mesh format 2/2:
Micromeshes

base-mesh

## 08: Meshes in Games

Part 2/2


127


128

