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3D Videogames
Università degli Studi di Milano

Rendering in 3D games
Part I: lighting environments

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games  
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: 3D Audio for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

For a more general, 
deeper discussion 

of many of the subjects
of this lecture, see the courses

CG 
«Computer Graphics»

and
RTGP

«Real-Time 
Graphics Programming»

:-(
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Example of a lighting equation
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+

material parameter

light parameter

geometry

nlerp( 𝑉 , 𝐿 , 0.5)

+ +

l 𝑒  
l 𝑒  
l 𝑒  

diffuse
term

specular
term

ambient
term

emission
term

the «half-way» vector
(avg of view dir and light dir)

repeat and sum for each light source
add only once

(for the “ambient” light)

Next: modelling 
the Light environment

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

lighting
environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

( the lighting
equation )

Illuminant
(data modelling

the Lighting 
Environment)
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Approaches to model 
the light environment in 2D games

We are about to discuss three ways:
 Discrete

 a finite set of individual light sources
(including one global ambient factor for the “leftovers”)

 Densely sampled
 environment maps: 

textures sampling incoming light
 Basis functions

 a spherical function stored as 
spherical harmonics coefficients

(They can be used jointly)

Discrete illumination environments.
A set of light sources:

directional light
 intensity / color
 direction

point lights 
 intensity / color
 position
 falloff function 

(opt.)

spot-lights
 intensity / color
 position
 direction
 falloff function (opt.)
 angular falloff funct.
 “cookie” texture

6

7



3D Video Games                                
15: Rendering Techniques for games

2023-06-08

Marco Tarini                                   
Università degli Studi di Milano 4

Cookie texture
(for spot-lights)

Illumination environments:
discrete
 a finite set of “light sources”…

 not many (e.g. ≤16)
 each one sitting in a node 

of the scene-graph
 each of a type:

 point light sources 
 have: position

 spot-lights
 have: position, 

orientation, wideness (angle)
 directional light sources 

 have: orientation only
 with attributes such as:

 color / intensity
 fall-off function (with distance)
 max range, and more

8

9



3D Video Games                                
15: Rendering Techniques for games

2023-06-08

Marco Tarini                                   
Università degli Studi di Milano 5

Light sources in the scene graph

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

view
space

L

T7

headlight

Example of a lighting equation
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𝑛    𝐻

l𝑠
l𝑠
l𝑠

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

+

material

light

geometry

+ +

l 𝑒  
l 𝑒  
l 𝑒  

diffuse
term

specular
term

ambient
term

emission
term

repeat coputation and sum 
for each (positional, directional, spot-) light source ambient light

For a directional light: 
a constant.

For a point or spot-light: 𝐿 =
P  −  P

P  −  P

pos of 
light

pos on 
surface

For a dir. light: 
consts. For point
or spot-lights:
attenuated by fall-off
functions (of angle, dist)
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Discrete illumination environments

 Pros: 
 simple to position /  reorient individual light sources

 both at design phase, or dynamically (at game exec)
 good model of illuminants, such as:

 explosions (positional lights) 
 car lights (spot-lights lights) 
 sun direction (directional light)

 relatively easy to compute (hard, soft) shadows for them 
 Cons:

 each light source requires extra processing … for each pixel!
 therefore: hard limit on their number. Prioritize
 therefore: are often given a (physically unjustified) radius of effect

 they don’t model well: 
 area light sources (e.g., from back-lit clouds)
 reflections on (metal) objects

see 
shadow
map
later

main illuminants
of the scene!

Discrete illumination environments

a finite set of “light sources”:
 A number of (directional | positional | spot-) lights
 Plus, one global “ambient light” factor

 models other minor light sources + bounces
 light incoming “from every direction at every position”

 it’s a distinct term in the lighting equation
 examples: 

 in an overcast outdoor scene: high 
 (dim shadows, flat looking lighting: 

every photographs’ favorite for portraits!)
 in realistic outer space: zero
 in any other scenes : something in between

(e.g., sunny day, or torch-lit cave)
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Densely sampled
illumination environments

 A light intensity / color from each direction d
 Asset to store that: 

“Environment map” texture

Densely sampled
illumination environments

 Latitude/longitude format
(of a unit vector d )

𝜃

180°-180°

90°

-90°

𝜑

𝜑

𝜃

d

𝑥

𝑦

𝑧
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Densely sampled
illumination environments
 Aka “sky-map” texture

 when it’s only / predominantly the sky to be featured
 doubles as textures for “sky boxes”

Densely sampled
illumination environments

 Environment map: (asset)
a texture with a texel t for each direction d
 t stores the intensity/color of the light coming from direction d

 Q: how to find 𝑢, 𝑣 position of t for a given d ?
 i.e. how to parametrize (flatten) the unit sphere

 Different answers are possible…

latitude/longitude format mirror sphere 
format

cube-map format
(ad-hoc HW support!)

unit vector
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Environment map (asset)

 A texture with a texel t for each direction d
 t stores the light coming from direction d
 useful to compute reflections on (curved) metallic objects
 often HDR (see later)

 Pro: realistic, complex, detailed, hi-freq, light env
 best for mirroring materials (such as metal, glass, water)

 Pro: can be captured from reality 
 see “mat-cap”

 Con: expensive to update
for dynamic scenes
 no prob, for static environments only

 Con: assume far away illuminants
 Not accurate for close illuminant

Environment map (asset): uses

1. Reflection mapping
 metallic objects
 material roughness → mipmap level!

Roughness 0
MIPMAP 0

Roughness 0.25
MIPMAP 2

Roughness 0.5
MIPMAP 4
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Environment map (asset): uses

1. Reflection mapping
 metallic objects
 material roughness → mipmap level!

2. More generally, 
description of the lighting env
 for lighting computation

3. Coverage of the background
 e.g., as a texture for the 3D sky-box / sky-dome

Lighting env in the scene graph

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

Env map
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Light environments:
using Basis Functions

 Lighting environment:
a continuous function  

 𝑓(𝑣) = amount of (rgb) light 
coming from direction 𝑣

 Store 𝑓 through basis functions

𝑓 𝑣 ≅ 𝑎 , 𝑓 , 𝑣 + 𝑎 , 𝑓 , 𝑣 + 𝑎 , 𝑓 , 𝑣 + 𝑎 , 𝑓 , 𝑣 + ⋯

set of all unit vectors
(i.e., surface of the unit sphere)

or R3 if RGB
colored light

a few scalar values to be stored, in order to represent (an approx. of) 𝑓

fixed spherical “basis” functions (always the same ones)

Spherical Harmonics (SpH):
a set of functions

𝑓 ,

𝑏
−3 −2 −1 0 +1 +2 +3

𝑎

0

1

2

3

+1

0

−1

𝑓 ,

𝑓 ,

𝑓 ,
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Spherical Harmonics (SpH):
a set of functions (a different visualization)

𝑓 , −3 −2 −1 0 +1 +2 +3

𝑎
𝑓 ,

𝑓 ,

𝑓 ,

positive

negative
0

1

2

3

𝑏

Spherical Harmonics (SpH):
a good choice for the basis functions

 Spherical Harmonics is a good set of basis functions for 
spherical functions

 Each function in the set has two indices 𝑎, 𝑏

 𝑓 , 𝑣    with   𝑎 ≥ 0 ,   −𝑎 ≤ 𝑏 ≤ +𝑎

 𝑓 , 𝑣 = 1 a constant function
(so, scalar 𝑎 ,  represent the total amount of light)

 all other basis function sum up to 0 
(i.e., their integral over Ω is zero)

 they are designed to have useful mathematical properties 
(e.g., orthogonality – the integral of the product of any two is 0)

 all SpH functions are easy to compute, e.g. integrate, etc

so, they control the distribution,
not the quantity, of light

the degree
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Light probes: 
Light environment stored with SpH

𝑓 𝑣 ≅ + 0.5 𝑓 , 𝑣   + 0.9 𝑓 , 𝑣 − 0.7 𝑓 , 𝑣  + 0.3 𝑓 , 𝑣 + 0.1 𝑓 , 𝑣 + ⋯

𝑓 𝑣 ≅      + 0.5 𝑓 , 𝑣   + 0.9 𝑓 , 𝑣 − 0.7 𝑓 , 𝑣  + 0.3 𝑓 , 𝑣 + 0.3 𝑓 , 𝑣 + ⋯

𝑓 is stored as    +0.5 , +0.9 , −0.7, +0.3,  0.1,  … 

(if it’s a colored Light Env, this is repeated for each R,G,B channel)

fixed, immutable, closed form functions that are easy to compute and manipulate

stored, i.e., the representation of                         as Spherical Harmonics

(grayscale) 
LIGHT ENV

Light probes: 
Light environment stored with SpH

 Spherical Harmonics (SPH) in brief:
 store Illumination Env as a small number (4,9,16…) of scalar 

weights of as many fixed spherical basis functions.
 Pros:

 very compact representation
 it models continuous functions well: 

good for smooth lighting environments
 it allows for efficient computation of the Lighting equation
 it’s easy to interpolate between light envs!

 Cons:
 continuous functions ONLY

 Not good for hi-freq details: for example, no hard lights
 not sudden variations (unless very many coefficient used)

 Good for soft light env

27
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Light probes
(position-dependent lighting env)

 A light probe == a (precomputed) lighting env. 
to be used around a given 3D position of the scene

 Light Probe lighting: 
 preprocessing: disseminate the scene with light probes

 Store them as… low-res environment maps
 …or, with  SPH (the standard solution)

 at rendering time, for an object currently in pos (xyz), 
use an interpolation of near-by “light probes”
 note: two (or more) SPH function can be interpolated!
 easy: just interpolate the weights

Light probes
(position-dependent lighting env)
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Light probes
(position-dependent lighting env)
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How parameters are fed
to the lighting equation

LIG
H

TIN
G

final
R, G, B

Material
parameters

Lighting
parameters

Geometric 
data

An example of a lighting model

𝑛    𝐿  

𝑑
𝑑
𝑑

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

l𝑎
l𝑎
l𝑎

⊗

𝑙𝐴
𝑙𝐴
𝑙𝐴

𝑛    𝐻

l𝑠
l𝑠
l𝑠

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

nlerp( 𝑉 , 𝐿 , 0.5)

+ +

l 𝑒  
l 𝑒  
l 𝑒  

diffuse
term

specular
term

ambient
term

emission
term

the «half-way» vector

repeat for each light source

+ + +

Q : in which space to express all these
versors (and the others like them)?

A: whichever! 
As long as it’s the same space
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B

In which space to compute 
the lighting?

world
space

A
F

G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

TBN
space

view
space

object
space

light dir

light pos

light pos
light pos & dir

normals
(attrib)view dir

In which space to compute 
the lighting?
 All versors that used in any operation in the lighting equation

must be expressed in the same space
 view direction, light directions, half-way vector, normals, tangent dirs…

 Choice: which space to use?
 View space? (the space of the camera)
 World space?
 Local object space? (the space of the object currently being rendered)

 With normal maps, usually the most efficient solution is:
 Use the same space the normals are expressed
 For normal stored as attribute: the Local Space (aka Object Space)
 For Tangent Space normal maps: in the the TBN space. Then…
 …all other versors must be transformed into this space, per vertex!
 …the normals accessed from the texture can be used right away, per pixel!
 This minimizes the amount of transformations needed

for anisotropic materials
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Rendering in 3D games
Part II: Common CG techniques in games

Rendering task for in 3D games:
overview

 Real time
 (20 or) 30 or 60 FPS

 Hardware (GPU) based
 pipelined, stream processing

 therefore: one class of algorithms (hardwired)
 rasterization based algorithm
 recent trend: switch to ray-tracing algorithms?

 Complexity:
 Linear with # of primitives
 Linear with # of pixels
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High-level view of mesh rendering

To render a mesh:
 load in GPU RAM:

 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET

For this lecture, we need go lower level (a bit)

Graphic card

43

BUS

CPU

ALU

(central)

RAM

Disk

Video card

…Internal bus
(of video card)

RAM
(video card)

GPU
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This lecture: 
a bird-eye view on…

 Basics of GPU-based rendering
 a brief summary of rasterization based rendering
 programmable parts of the pipeline
 depth-maps
 double buffering

 Rendering techniques & tricks used in games
 Multi-pass techniques in general
 Deferred shading
 Screen space techniques in general
 A summary of a few common CG techniques

Rendering of a mesh = 
rasterization of all its triangles

x

y z

𝐯0  = ( 𝑥0, 𝑦0, 𝑧0 ) 

𝐯1  = ( 𝑥1, 𝑦1, 𝑧1 ) 

𝐯2  = ( 𝑥2, 𝑦2, 𝑧2 ) 
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Example: full API for the GPU pipeline (OpenGL) 2/2

GPU pipeline –
a simplified conceptual version

3D vertex
+

attributes

fragment
process

final
RGB
pixel

fragments
(“wannabe pixel”)

vertex
process

z x

v0
v1

v2

rasterizer

y

2D screen 
triangle

v0
v1

v2
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Rasterization based rendering: 
steps (remarks 1/2)
 Vertex processor:  (per vertex)

 Input: vertex data (position + initial attributes)
 Output: a final screen position, 

and other (refined) attributes

 Rasterizer: (per triangle)
 Input: a triplet of processed vertex (with attributes)
 Output: many “fragment”, one for each pixel covered by the triangle, 

each with interpolated attributes

 Fragment shader: (per fragment)
 Input: a fragment (with attributes)
 Output: a final rgb color (plus: an alpha value, plus: a depth value)

 Output combiner: (per fragment)
 Writes the rgb color on the screen buffer
 Overwrites, blends, or preserves the old value

It’s a SIMD architecture:
Every step does the same
processing on several inputs,
producing several output,
all in parallel,

Rasterization based rendering: 
steps (remarks 2/2)

 It’s a pipelined architecture:
every step works in parallel with all others
 E.g., while fragment are processed, the next triangle is 

being rasterized, and the next vertices are processed

 It’s a SIMD architecture:
Every step does the same processing on several 
inputs, producing several output, all in parallel,
 E.g., several fragments are processed at the same time

(each one independently from the others)
 E.g., same for vertices
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Rasterization based rendering: 
what is done in each step (examples)

 Per vertex:
 projection: transform from object space to screen space

 skinning:  transform from rest pose to current pose

 Per triangle: (rasterizer)
 rasterization
 interpolation all per-vertex attributes  ←nota bene!

 Per fragment:
 lighting: from normal + lights + material to RGB

 texturing: i.e., textures are accessed in this stage

 alpha-kill: (almost) fully transparent fragments are removed

 Per fragment: (output combiner, after the fragment shader)
 depth-test: occluded pixels are removed

 alpha-blend: semi-transparent fragments are mixed with background

the 
Vertex 

Shader

the 
Fragment

Shader

hard 
wired

hard 
wired

GPU pipeline – bottlenecks 
(remarks and terminology)

 Like in any pipeline, the process goes as slow as its slowest stage
 i.e., the «bottleneck» of the pipeline determines the total speed
 Any other stage is idle for part of the time (which is always a waste)

 stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)

 stages after it are «starved» (they wait for input from previous stage)
 Bottleneck terminology: (in CG) 

 If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)

 If the bottleneck is per fragment, the app is fill-limited
(«it cannot fill the screen buffer with pixel fast enough»)

 Performaces (rendering FPS) of a game only impoves 
if computational load is removed from the bottleneck phase
 Example: 

using all meshes at LOD 1 instead of one does not help a fill-limited app
 Example: 

reducing the resolution of the screen does not help a geometry-limited app
 Using a simpler lighting model does not help a geometry-limited app

MORE COMMON 
CASE, FOR GAMES
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Rasterization-Based Rendering

3D 
vertices

per
fragment

final
pixels

"fragments"

per 
vertex

z x

v0
v1

v2

per 
triangle

y

2D triangle
on screen

v0
v1

v2

PROGRAMMABLE:
a user-defined

"Vertex Shader"
(or “vertex program”)

PROGRAMMABLE:
a user-defined

"Fragment Shader"
(or “pixel program”)

HARD-WIRED in the GPU

In many game engines,
shaders are part of the “material asset”

To render a mesh:
 load (in GPU RAM):

 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET
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Programming languages
for writing shaders

 High level:
 HLSL (High Level Shader Language, Direct3D, Microsoft)
 GLSL (OpenGL Shading Language)
 CG (C for Graphics, Nvidia)
 PSSL (PlayStation, Sony)
 MSL (Metal, Apple)

 Low level:
 ARB Shader Program 

(the “assembler” of GPU – now deprecated)

Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 which is sent to the screen

 …also produces a depth-buffer
 as a by-product!
 not set to the screen: it’s an “offline” buffer
 it’s used during the rendering to determine occlusions

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it’s covered by that something)

 see computer graphics course for more details

 many rendering algorithms exploit the depth-buffer 
 for different uses
 for each pixel on the screen, we have not only its RGB value, but its depth 

value (a scalar from 0 – close to the camera, to 1 – far from the camera)

a 2D array
of RGB values

of some 
resolution

a 2D array
of depth values

(scalars in 0 to 1)
of the 

same resolution
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basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product

basics: Double Buffering
 To render a scene, all meshes are rendered succession

 Filling the screen buffer

 Double-buffering is a basic technique to prevent any 
incomplete buffer to ever reach the screen
 E.g., a rendering where some of the meshes is still not rendered

 How it works:
 We have two RGB buffers: the front-buffer and the back-buffer
 The front buffer shows the last complete rendering 

and is the one the screen shows
 The back buffer is filled by the renderings, but it is not shown

(it’s yet another example of “off-screen buffer”)
 Screen Swap: When the back buffer is ready, the two buffer are 

swapped (instantaneously)
 Info about variants: look up what “V-sync” means in 3D games settings
 Observation: the depth-buffer is not doubled
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SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)

basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP
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basics: Per-pixel lighting

 Typically, lighting happens at the per fragment (per pixel) stage
 the cheapest option, compute lighting per vertex,

(and interpolate the resulting final RGB)
saves computation but impacts quality 
(and disallows normal-maps and textures)

 Non uniform material parameters are 
 gathered from textures with texture accesses
 or interpolated from per-vertex attributes (cheaper)

 Because lighting equations are now quite complex, this burdens 
the per-pixel stage considerably!
 For this reason, games are often fill-limited

formerly known 
as “Gouraud shading” 

heavily optimized,
but still expensive

Texture access: it’s in the per 
fragment process

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

TEXTURES

“Render Target”

per
fragment
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basics: Render to Texture
(multi-pass rendering)

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

“Render Target”

“Render Target”

other 
accesses

per
fragment

per
fragment

f i r s t  p a s s

s e c o n d  p a s s

Multipass rendering techniques 
(general concept)

 1st pass: fill an internal 2D buffer
 i.e., an “off-screen” buffer (a buffer never shown to the user)
 it’s the output of this rendering, i.e. its “render target”
 normally, the render target is the “screen buffer”

(the buffer shown to the screen)
 this technique is aka “render to texture”

 2nd pass: fill the final screen buffer
 using the just-computed internal buffer as a 2D texture

 Note: efficient because…
 the off-screen buffer is either only write-only (1st pass) 

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU!
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Example: metallic reflections
of dynamic scenes

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting
including
reflection
over 
metallic objects

2n
d 

PA
SS Final

Screen-Buffer

Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)
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 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER

per 
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting

 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single 
full-screen

quad

per
fragment

2n
d 

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth 
buffer

per
fragment

per 
triangle

per 
vertex

1s
t P

AS
S
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Deferred shading 
 Advantage: 

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage: 
needs a separate buffer for every material parameter 
(or, sometimes, a material index)
 Normal buffer
 Depth buffer
 Base color buffer

 Limits the range of materials?
 Disadvantage: not good for semi-transparencies

Ad-hoc rendering techniques
popular in games: things we will see

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares 
 limited Depth Of Field

 Motion Blur
 High Dynamic Range 
 Non-Photorealistic Rendering

 e.g., cell shading:
 1. contours
 2. lighting quantization

 Texture-for-geometry
 Bump-mapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF
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Screen-Space techniques (in general)
(a class of multi-pass techniques)

 1st pass: 
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:

 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, we can apply image filters to the rendering.
 Many of the techniques in the previous slides are like this

Shadow mapping
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Shadow mapping

Shadow-mapping in a nutshell
(a multi-pass technique for shadows)

1st pass: 
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass: 
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast a shadow
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Shadow-mapping
concept

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER

Shadow mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional  topics
(no exam)
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Shadow Mapping:
effect of being in shadow

𝑛    𝐿  

𝑑
𝑑
𝑑

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

l𝑎
l𝑎
l𝑎

⊗

𝑙𝐴
𝑙𝐴
𝑙𝐴

𝑛    𝐻

l𝑠
l𝑠
l𝑠

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

+

material parameter

light parameter

geometry

+ +

l 𝑒  
l 𝑒  
l 𝑒  

diffuse
term

specular
term

ambient
term

emission
term

repeat for each light source

+ + +

negated for that light source
(if with PCF: maybe only in part)

Shadow Mapping:
effect of being in shadow

 Negates (zeroes) the 
light term of that (discrete) light-source

 Observe: the other light components are 
unaffected:
 Other (non shadowed) lights
 The ambient factor
 Emission factor
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Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps) 
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the 
“ambient” component of lighting, instead

 Idea: 
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point 𝐩, its AO factor is a measure of how 

much 𝐩 is exposed in the open
 𝐩 is well exposed: AO ≈ 1.0
 𝐩 is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind: 
 (1) it is an approximation 
 (2) it is a purely geometrical computation
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Two ways to compute AO:
OSAO  versus  SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture 

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

Baked AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor
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No SSAO

OFF

With SSAO

ON
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Screen Space AO
in a nutshell

 1st pass: standard rendering
 produces: rgb image
 produces: depth image

 2nd pass: 
screen space technique
 for each pixel, look at its depth VS depths of its neighbors:

 Neighbors are in front? 
difficult to reach pixel: low AO factor (closer to 0)

 neighbors are behind? 
pixel exposed to ambient light: high AO factor (closer to 1)

Ambient occlusion: 
effects

𝑛    𝐿  

𝑑
𝑑
𝑑

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

l𝑎
l𝑎
l𝑎

⊗

𝑙𝐴
𝑙𝐴
𝑙𝐴

𝑛    𝐻

l𝑠
l𝑠
l𝑠

⊗

𝑙𝐿
𝑙𝐿
𝑙𝐿

+

material parameter

light parameter

geometry

+ +

l 𝑒  
l 𝑒  
l 𝑒  

diffuse
term

specular
term

ambient
term

emission
term

repeat for each light source

+ + +

negates 
some % 
of this
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(limited)
Depth of Field

depth
in focus 
range:
sharpdepth

out of focus 
range:

blurred

(limited) Depth of Field 
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing

 RGB image (kept off screen)
 depth-buffer (as usual)

 2nd pass: 
 pixel inside of focus range?  Keep in focus
 pixel outside of focus range?  blur

 Blur, way 1 = average with neighboring pixels
kernel size ~= amount of blur

 Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation
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HDR - High Dynamic Range
(limited Dynamic Range)

HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: fill the off-screen buffer 

like a normal rendering, 
EXCEPT use lighting / materials value that are HDR
 so, RGB of final pixel values not in [0..1]
 e.g., sun emits light with  RGB [ 15.0 , 15.0 , 15.0 ]: 

 Second pass: 
 Make values >1 bleed over neighboring pixels
 i.e.: overexposed pixels lighten neighbors pixels
 Result: halo effect

>1 = “overexposed”! 
i.e., “whiter than white”
(here: 15 times brighter 

than the maximal screen brightness)
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Motion Blur

Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:

 imitating a given style (imitative rendering),
such as:
 cartoons (“toon shading”)  most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, comics, etc  very common
 pastels, oil paintings, crayons …

 clarity/readability  (illustrative rendering) 
 usually not for games
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Toon shading / Cel Shading

Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam 
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Not just for games

The Dragon Prince – Bardel Entertainment, 2019 

Toon shading / Cel Shading
in a nutshell

 Simulating “toons” / hand drawn effect
 At its basics, a combination of two effects:

 addition contour lines
 lines appearing at discontinuities of:

1. depth, 
2. normals, 
3. materials

 quantized lighting:
 e.g., 2 or 3 tones: light, medium, dark

instead of continuous shades
 a simple variation of lighting equation: 

quantize its result
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NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)

NPR rendering:
simulated pixel art

img by Lucas Pope

106

108


