02: Point and Vector Algebra

(exercises 1)

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics O - + DO
lec. 5: Game Particle Systems
lec. 6: Game 3D Models DO
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

4

02: Point and Vector Algebra

(exercises 1)

Point, Vectors, Versors and Spatial Transformation

They are the basic data-type of 3D Games

- In the computation, for all modules
- rendering engine
- physics engine
- AI
- 3D sound
- ...
- In the data structures of all 3D Assets
- Meshes, animations, etc

6

02: Point and Vector Algebra

(exercises 1)

7

Points, Vectors, Versors
...on a 3D floating tirangle

Examples of...

- point:
- one vertex of the triangle
- vector:
- one side of the triangle
- versor:

- the «normal» of the triangle

8

02: Point and Vector Algebra

(exercises 1)

10

Points, Vectors, Versors
...in a spinner
Examples of...

- points
- vectors
- versors

02: Point and Vector Algebra

(exercises 1)

14

Stuff = Points + Vectors + Versors

02: Point and Vector Algebra

(exercises 1)

16

Stuff $=$ Points + Vectors + Versors

18

The algebra of points, vectors, versors (and scalars)

- also, familiarize with the way the operations behave, i.e. rules such as

(1) commutativity? associativity? (of each operation)
(2) distributivity? (between pairs of operations)
(3) inverse operation? identity element? absorbing element?

02: Point and Vector Algebra

(exercises 1)

Point and vector algebra

(summary 1/7)

- Difference:
point - point $=$ vector

- Addition:
point + vector $=$ point

Point and vector algebra

(summary 2/7)

- Linear operations for vectors
- addition (vector + vector = vector)

- product with a scalar (scaling) (vector * scalar = vector)
- therefore: interpolation
 $\operatorname{mix}\left(\overrightarrow{v_{0}}, \overrightarrow{v_{1}}, t\right)=(1-t) \overrightarrow{v_{0}}+t \overrightarrow{v_{1}}$
- therefore: opposite (flip verse) (how to: multiply by - 1)
- therefore: difference (vector - vector $=$ vector)

02: Point and Vector Algebra

(exercises 1)

Point and vector algebra

(summary 3/7)

- Norm (for vectors)
- aka length / magnitude /
 Euclidean norm / 2-norm
- distance between points:
length of vector $(a-b)=$ distance between a and b
- Rules: triangle inequality:

Point and vector algebra

(summary 4/7)

- Normalization

- Input: a vector. Result: a versor
- how to: scale the vector by (1.0 / length)

02: Point and Vector Algebra

(exercises 1)

26

Point and vector algebra

(summary 5/7)

- Dot product (or inner product)

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\| \cdot\|\vec{w}\| \cdot \cos (\alpha)
$$

3D Video Games

02: Point and Vector Algebra

(exercises 1)

Point and vector algebra

(summary 5/7)

- Dot product, useful to:
- dot is zero: vectors are orthogonal (or, either vector is degenerate)
- positive dot: acute angle

- versor dot vector: extension of vector along direction
- versor dot versor: cosine of angle
- versor dot versor: also, a similarity measure (in -1 +1)
- any vector dot itself: its squared length

Point and vector algebra

Products: additional reading

To be continued!
Products between vectors and/or versors

- Dot product (or inner product)

- Output: a scalar
- Cross product (or vector product)
- Output: a vector (note: not a versor)

Section 2.3

02: Point and Vector Algebra

(exercises 1)

59

Points, Vectors, Versors:

mini problems

- The following are examples of spatial problem problems that need to be solved in 3D games
- They can be solved simply using point/vector/versor algebra
- Many game engines libraries implement functions for many of them
- General schema for finding a solution:
- identify input and output (and their types)
- maybe draw a schema

For some of them, the solution will be given in full here. In other, only a trace of the solution is given

- write the equations driven by the drawing, (using your spatial understanding of the operations): e.g. what is orthogonal to what?
- identify the unknowns
- manipulate the equations according to the rules to extract extract the unknowns
- if coding: everything is ready to code it!

3D Video Games

02: Point and Vector Algebra

(exercises 1)

Point to point distance (trivial)

"When the player in position p is closer than k to a powerup in pos q, then the powerup is collected"

- Data: p, q points, k scalar
- Test: $\quad\|\mathrm{p}-\mathrm{q}\|<k$
- Optimize vers: $\|\mathrm{p}-\mathrm{q}\|^{2}<k^{2}$
- Pseudo-code example:

```
vec3 p,q;
scalar k;
if ( dot(p-q,p-q) < k*k ) then /*collect*/
```

62

Ray-Plane intersection VerO

"I shoot a laser from p in direction d toward a plane which contains points q and has normal \hat{n}.
Which point q do I hit?"

- Trace:
- Define q as a point on the laser (see Ray-Sphere inters.)
- Define q as a point on the plane
(hint: the vector connecting it to any other point on the plane is orthogonal to $\overrightarrow{\mathrm{n}}$)
- Combine the two equations into one
- Extract the only incognita

02: Point and Vector Algebra

(exercises 1)

64

Sphere-sphere intersection

(trivial)
"Given two spheres with center in c_{0} and c_{1} and radii r_{0} and r_{1} : do they intersect? Do they touch?"

- Hint:
- remember that working with squared norms is more efficient (and more accurate) than working with vector norms

02: Point and Vector Algebra

(exercises 1)

> The missile and the wall (trivial)
> "A missile is moving at constant velocity $\overrightarrow{\mathrm{v}}$ (meter per sec), in the general proximity of a large (infinite)
> wall with normal $\hat{\mathrm{n}}$.
> After some time $t(\mathrm{sec})$, how much closer to (or farther from)
> the wall is it?"

Projection of a point on a segment

"Which \mathbf{c}^{\prime} point on a segment connecting point \mathbf{a} and \mathbf{b} is closer to a third point $\mathbf{c}^{\prime \prime}$?

02: Point and Vector Algebra

Plane VS Point test

- Input: a point \mathbf{q} and a plane given by:
- its normal: ̂n
- a point on it at random: \mathbf{p}
- Q: on which side of the plane is \mathbf{q} ?
- A: it's the sign of
$\hat{n} \cdot(\mathbf{q}-\mathbf{p})=$
$\hat{n} \cdot \mathbf{q}-\vec{n} \cdot \mathbf{p}=$
$\hat{\mathrm{n}} \cdot \mathbf{q}+k \longleftarrow=$

$$
k=-\vec{n} \cdot \mathbf{p}
$$

(minus distance of plane from origin)
$\left(n_{x}, n_{y}, n_{z}, k\right) \cdot\left(q_{x}, q_{y}, q_{z}, 1\right)$

68

Vision cones

"A guard has eyes in position q and looks in direction $\widehat{\mathrm{d}}$.
Does it spot a fly in position p, if his cone of vision is 60° wide?"

- Hypotheses: no occlusions
- Trace:
- For angles α, β in $0 . .90^{\circ}: \alpha<\beta \leftrightarrow \cos (\alpha)>\cos (\beta)$
- Find cosine of angle between view direction and the vector connecting q to p
- Determine if this cosine is $>\cos \left(60^{\circ} / 2\right)$

