Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
30

Point and vector algebra

(summary 6/7)

- Interpolate between pairs of <something> :
- mix (point, point, $t) \rightarrow$ point
- mix(vector, vector, t) \rightarrow vector
- mix(versor, versor, t) \rightarrow versor
- t is a scalar «weight»
- $t=0 \rightarrow$ pick the first one
- $t=1 \rightarrow$ pick the second one
- $t \in(0,1) \rightarrow$ get something in between, for example:
- $t=0.5 \rightarrow$ just average the two
- $t=0.1 \rightarrow$ use almost the first, with just a bit of the second in it
- $t<0$ or $\mathrm{t}>1 \rightarrow$ extrapolate
- Terminology: (in libraries, game engines...)
- interpolate $=$ mix $=$ blend $=$ lerp -

Interpolation in general - notes

- Very used in Computer Graphics (e.g., rendering, animation)
- Terminology:
- $a \mathrm{x}+b \mathrm{y} \quad:$ a linear combination of x and y
- if $a+b=1$ and $a, b \in[0,1]$: a (linear) interpolation of x and y
- if $a+b=1$ but $a, b \notin[0,1]$: a (linear) extrapolation of x and y
- $a, b \quad:$ the used weights
- $a+b=1 \quad:$ weights are a partition of unity
- Generalizes to >2 objects $(a x+b y+c z)$
- When interpolating 2 objects, we can just give one weight t.
- The other is given by difference. $a=t, b=1-t$
- The interpolation is often written in programming languages as mix ($\mathbf{x}, \mathbf{y}, \mathrm{t}$) (or similar ways). Rember: $\mathrm{t}=0 \rightarrow$ pick the first
- It's a general concept! All sorts of objects can be interpolated
- Intuition: interpolation = a mix between objects
- Let's analyze case of Points, Vectors, Versors

How to interpolate between...

But easily

generalizes to >2

- ...two vectors \mathbf{v}_{0} and \mathbf{v}_{1} :

$$
(1-t) \mathbf{v}_{0}+(t) \mathbf{v}_{1}
$$

- ...two points
\mathbf{p}_{0} and \mathbf{p}_{1} :

$$
\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

Linear

interpolation

Only legal operations with an easily defined geometric
meaning (to-do: check)
which you may also want to write as:

$$
(1-t) \mathbf{p}_{0}+(t) \mathbf{p}_{1}
$$

Summing... two points ??
We usually don't need any such operation.
But it's equivalent, mathematically.

02: Point and Vector Algebra (part 2)

How to interpolate between...

But easily
generalizes to > 2

- ...two vectors \mathbf{v}_{0} and \mathbf{v}_{1} :

$$
(1-t) \mathbf{v}_{0}+(t) \mathbf{v}_{1}
$$

- ...two points \mathbf{p}_{0} and \mathbf{p}_{1} :

$$
\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

- ...two versors \mathbf{d}_{0} and \mathbf{d}_{1} :

$$
(1-t) \mathbf{d}_{0}+(t) \mathbf{d}_{1}
$$

then renormalize the result (it's no longer unitary). Or, use "spherical interpolation" (aka "slerp")...

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

Not the same result!

- But, close enough
- Even closer when:
$\mathbf{d}_{0}, \mathbf{d}_{1}$ similar OR t close to $1 / 2$
- Is it worth the extra
computation cost? \because

3D Video Games

The formulas

- LERP + normalization:

$$
\left.\begin{array}{c}
(1-t) \mathbf{d}_{0}+t \mathbf{d}_{1} \\
\text { then re-normalize }
\end{array}\right\} \text { aka "NLERP" }
$$

- or SLERP:
angle
between
\mathbf{d}_{0} and \mathbf{d}_{1}

$$
\frac{\sin ((1-t) \alpha)}{\sin (\alpha)} d_{0}+\frac{\sin (t \alpha)}{\sin (\alpha)} d_{1}
$$

36

SLERP: notes

- Applicable to any versor (unit vector) including 2D, 3D, and quaternions (see later)
- SLERP can even be used on general vectors:
- Compute magnitudes of vectors
- Compute directions of vectors
(divide by magnitude, i.e., normalize)
- new direction = SLERP of the directions (unit vectors)
- new magnitude $=$ LERP of the magnitudes (scalars)
- multiply new dir with new mag to get the final result

3D Video Games

Point and vector algebra

(summary 7/7)

- Cross product:

$$
\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}=\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right) \times\left(\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right)=\left(\begin{array}{l}
v_{y} w_{z}-v_{z} w_{y} \\
v_{z} w_{x}-v_{x} w_{z} \\
v_{x} w_{y}-v_{y} w_{x}
\end{array}\right)
$$

38

Point and vector algebra

(summary 7/7)

- Cross product, useful to:
- find a vector orthogonal to two given vectors
- therefore: construct orthonormal basis
- collinearity test (if colinear, then result is $(0,0,0)$)
- find (double) area of a triangle (floating anywhere in 3D)
- find normal of a triangle in 3D (remember to renormalize it)
- norm of (versor cross versor): sin of angle
- 2 D versor $\times 2 \mathrm{D}$ versor: \sin of angle

3D Video Games

02: Point and Vector Algebra (part 2)

40

Note: Generalization to
N - Dimensions

- Everything seen in this lecture generalizes in 2D (for 2D games), or even in $\mathrm{N}>3$ dimensions
- Exception: the cross product is only defined in 3D
- But in 2D, the problem of finding a vector/versor orthogonal to one (just one!) given vector/versor is easy: "swap coordinates, flip one* sign" (x, y) orthogonal to $(-y, x)$, and also to $(y,-x)$
*: which coordinate you flip determines if you rotate 90° clockwise or counterclockwise: try!

3D Video Games

02: Point and Vector Algebra (part 2)

42

Cross product:

full geometric interpretation

$$
\vec{u}=\vec{v} \times \vec{w}
$$

- Length of $\vec{u}=\|\vec{v}\| \cdot\|\vec{w}\| \cdot \sin (\alpha)$
- Direction of $\vec{u}=$ orthogonal to both \vec{v} and \vec{w}
- Verse of $\vec{u} \quad=$ use the «right-hand rule» or the «left-hand rule»
- whicever hand you are using to imagine your vector space! (and reference frame)

3D Video Games

02: Point and Vector Algebra (part 2)

44

recap: Reference Frame (or Space)

1 origin (point)

- Any vector v :
one linear comb. of the axes
- Any point p:
origin + one linear
comb. of axes

3D Video Games

02: Point and Vector Algebra (part 2)

Recap: Orthonormal Frames Or Cartesian Frame

- Axes are unit vectors and reciprocally orthogonal

46

Recap: Handed-ness of a
(Cartesian) frame

- They can be right- or left-handed

$x \times y=z$

$x \times y=z$ regardless!

Use the same hand to imagine a cross product

3D videogames
Points, Vectors, Versors: mini task and exercises

Part II

Marco Tarini

70

Problem: surface normal

(trivial)
"I have three points on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ on a plane: find the normal \hat{n} of this plane (a versor)"

- Trace:
find any two different vectors on the plane
- Question: what determines the direction of \hat{n} ?

3D Video Games

Problem: triangle area

(trivial)
"I have three points on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in space.
Find the area of the triangle connecting them"

- Hint:
it's half the area
of a parallelogram

Vector orthogonalization

"Find a versor $\hat{\mathrm{u}}^{\prime}$ that is ortogonal to a given $\hat{\mathrm{n}}$ such that it is as similar as possible to a given versor $\hat{u}^{\prime \prime}$

Solution: $\quad \hat{\mathrm{u}}^{\prime}=\hat{\mathrm{n}} \times \hat{\mathrm{u}} \times \hat{\mathrm{n}} \quad$, then renormalize it.
Coding examples, in different languages:

```
vec3 n,u;
u = cross( cross( n , u ) , n );
u = normalize( u );
FVector n,u;
u = FVector::CrossProduct( FVector::CrossProduct(n,u),n );
u.Normalize();
Vector3 n,u;
                                    C#, with Unity
u = Vector3.Cross( Vector3.Cross( n , u ) , n );
u = u.normalized;
```


3D Video Games

Orthonormal base completion

"I have only two axes \hat{x} and \hat{y} of an orthonormal bases, how do I find the third vector $\hat{\mathrm{z}}$?"

- Data: \hat{x}, \hat{y} versors
- Hypotheses: $\hat{\mathrm{x}}$ and $\hat{\mathrm{y}}$ are already orthogonal
- Variant: \hat{y} is not exactly orthogonal to \hat{x}, but I want to change it the least to make it orthogonal ($\hat{\mathrm{x}}$ is to be kept constant) (see previous problem)

Decompose a vector into components

- Given a vector \vec{v} and a plane normal \hat{n}, split \vec{v} in the vector sum
$\vec{v}=\vec{v}_{n}+\vec{v}_{p}$ with
- \vec{v}_{n} orthogonal to the plane
(= parallel to \hat{n})
- \vec{v}_{p} parallel to the plane
(= orthogonal to \hat{n})

Alternative solution

$$
\begin{aligned}
& \vec{v}_{n} \leftarrow(\hat{n} \cdot \vec{v}) \hat{n} \\
& \vec{v}_{p} \leftarrow(\hat{n} \times \vec{v}) \times \hat{n}
\end{aligned}
$$

3D Video Games

Decompose a vector into components

- Given a vector \vec{v}
and a plane normal \hat{n}, split \vec{v} in the vector sum
$\vec{v}=\vec{v}_{n}+\vec{v}_{p}$ with
- \vec{v}_{n} orthogonal to the plane
(= parallel to \hat{n})
- \vec{v}_{p} parallel to the plane (= orthogonal to \hat{n})

- A solution in 3 steps:
(1) $k \leftarrow \vec{v} \cdot \hat{n} \quad k$ is a (signed) scalar: the extension of \vec{v} along $\operatorname{dir} \hat{n}$
(2) $\vec{v}_{n} \leftarrow k \hat{n} \quad \vec{v}_{n}$ is the component of \vec{v} along \hat{n}
(3) $\vec{v}_{p} \leftarrow \hat{n} \vec{v}-\vec{v}_{n} \vec{v}_{p}$ the component of \vec{v} orthogonal to \hat{n}

76

Line-Line "intersection"

"Given two 3D lines, find the two points on both lines that are as close as possible to each other"
(they are the same point, if the lines intersect!)

- Input: a point on line "A" p_{A} and its direction $\hat{\mathrm{d}}_{\mathrm{A}}$ a point on line " B " p_{B} and its direction \widehat{d}_{B}
- Output: two points q_{A} and q_{B}

3D Video Games

Ray-Plane intersection Ver1

"I shoot a laser from p in direction \hat{d} toward a plane which contains points a b c. Which point q do I hit?"

- Hypotheses: a b c are not colinear (not on a line)
- Trace:
- Find vector $\overrightarrow{\mathrm{n}}$ orthogonal to plane, use cross product (question for later: are magnitude and verse important?)
- Define q as a point on the laser (see Ray-Sphere inters.)
- Define q as a point on the plane (hint: the vector connecting it to any other point on the plane is orthogonal to $\overrightarrow{\mathrm{n}}$)
- Combine the two equations into one
- Extract the only incognita

Plane-plane intersection

"Given two 3D planes, find the line they share"

- Input: a point on plane "A" \mathbf{p}_{A} and its normal $\hat{\mathrm{n}}_{\mathrm{A}}$ a point on plane "B" \mathbf{p}_{B} and its normal $\hat{\mathrm{n}}_{\mathrm{B}}$
- Output:
a point on the line \mathbf{q} and the line direction \hat{d}
Shooting a walking target (with a finite speed bullet) $1 / 2$
"I shoot a bullet from p with velocity $\overrightarrow{\mathrm{v}}$. At which time the bullet will be the closest to a target currently in position q and moving with velocity $\overrightarrow{\mathrm{w}}$? Where will bullet and target be, at that point?"
(useful, e.g., for a sniper AI "leading" a target)
- Data: p, q points, \vec{v} and \vec{w} vectors
- Hypothesis: nothing accelerates (everything keeps moving at a constant speed)

80

Shooting a walking target (with a finite speed bullet) 2/2

Trace

- Position of bullet at time $t: \mathrm{p}+t \overrightarrow{\mathrm{v}}$
- Position of target at time $t: \mathrm{q}+t \overrightarrow{\mathrm{w}}$
- Squared distance between the two at time t :

$$
\begin{gathered}
\|(\mathrm{p}+t \overrightarrow{\mathrm{v}})-(\mathrm{q}+t \overrightarrow{\mathrm{w}})\|^{2} \\
= \\
\|(\mathrm{p}-\mathrm{q})+t(\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}})\|^{2}
\end{gathered}
$$

- Work on formulas (remember that $\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}$) find derivative for $\mathrm{d} t$, equate derivative to 0 , extract t

