
3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 1

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Point and vector algebra
(summary 6/7)

 Interpolate between pairs of <something> :
 mix(  point  ,  point  , t ) → point
 mix( vector , vector , t ) → vector
 mix( versor , versor , t ) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0  or  t > 1  → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

30

31



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 2

Interpolation in general - notes
 Very used in Computer Graphics (e.g., rendering, animation)
 Terminology:

 a x + b y :  a linear combination of x and y
 if  a+b=1      and    a,b ∈[0,1] :  a (linear) interpolation of x and y
 if  a+b=1      but     a,b ∉[0,1] :  a (linear) extrapolation of x and y
 a , b :  the used weights
 a + b = 1 :  weights are a partition of unity

 Generalizes to > 2 objects  (a x + b y + c z )
 When interpolating 2 objects, we can just give one weight t.

 The other is given by difference.  a = t,  b = 1-t
 The interpolation is often written in programming languages 

as   mix( x, y, t ) (or similar ways). Rember: t=0 → pick the first

 It’s a general concept! All sorts of objects can be interpolated 
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

How to interpolate between…

 …two vectors 𝐯 and  𝐯ଵ :
 1 −  𝑡  𝐯  +   𝑡  𝐯ଵ

 …two points 𝐩 and  𝐩ଵ :
𝐩  + 𝑡 𝐩ଵ − 𝐩

which you may also want to write as:
 1 −  𝑡  𝐩  +  𝑡  𝐩ଵ

Scaling… a point ??

Only legal 
operations

with an easily 
defined

geometric 
meaning

(to-do: check)

Linear
interpolation

But easily 
generalizes to > 2

Summing… two points ??

We usually don’t need any such operation.
But it’s equivalent, mathematically.

32

33



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 3

How to interpolate between…

 …two vectors 𝐯 and  𝐯ଵ :
 1 −  𝑡  𝐯  +   𝑡  𝐯ଵ

 …two points 𝐩 and  𝐩ଵ :
𝐩  + 𝑡 𝐩ଵ − 𝐩

 …two versors 𝐝 and  𝐝ଵ :
 1 −  𝑡  𝐝  +   𝑡  𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)… 

Linear
interpolation

But easily 
generalizes to > 2

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝, 𝐝ଵ, ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝 , 𝐝ଵ similar OR t close to ½ 

 Is it worth the extra
computation cost? 

𝐝 = slerp(𝐝, 𝐝ଵ, ⅔)

⅔ α ⅓α
𝐝 𝐝ଵ

𝐝 𝐝ଵ

𝐝 𝐝ଵ

34

35



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 4

The formulas

 LERP + normalization:

 1 −  𝑡  𝐝𝟎  + 𝑡  𝐝ଵ

then re-normalize

 or SLERP:

sin  1 −  𝑡  α

sin(α)
𝐝  + 

sin  𝑡 α

sin(α)
𝐝ଵ

aka “NLERP”

angle 
between
d0 and d1

SLERP: notes

 Applicable to any versor (unit vector)
including 2D, 3D, and quaternions (see later)

 SLERP can even be used on general vectors:
 Compute magnitudes of vectors
 Compute directions of vectors 

(divide by magnitude, i.e., normalize)
 new direction = SLERP of the directions (unit vectors)
 new magnitude = LERP of the magnitudes (scalars)
 multiply new dir with new mag to get the final result

36

37



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 5

Point and vector algebra
(summary 7/7)

 Cross product:

v × w = 
𝑣௫

𝑣௬

𝑣௭

×

𝑤௫

𝑤௬

𝑤௭

=

𝑣௬  𝑤௭ − 𝑣௭ 𝑤௬

𝑣௭  𝑤௫ − 𝑣௫ 𝑤௭

𝑣௫ 𝑤௬ − 𝑣௬ 𝑤௫

Point and vector algebra
(summary 7/7)

 Cross product, useful to:
 find a vector orthogonal  to two given vectors
 therefore: construct orthonormal basis
 collinearity test (if colinear, then result is (0,0,0))
 find (double) area of a triangle (floating anywhere in 3D)
 find normal of a triangle in 3D (remember to renormalize it)
 norm of (versor cross versor): sin of angle
 2D versor × 2D versor: sin of angle

38

39



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 6

Products and angles

α

v

w

Note: Generalization to 
N - Dimensions

 Everything seen in this lecture
generalizes in 2D (for 2D games),
or even in N>3 dimensions 

 Exception: the cross product is only defined in 3D
 But in 2D, the problem of finding a vector/versor 

orthogonal to one (just one!) given vector/versor is easy: 
“swap coordinates, flip one* sign”
(x,y) orthogonal to (-y,x), and also to (y,-x)

*: which coordinate you flip determines if you rotate 90°
clockwise or counterclockwise: try!

40

41



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 7

Geometric interpretation: 
cross product is the parallelogram area

α v

w w

v

ℎ

𝑏

𝑏 ℎ

Cross product: 
full geometric interpretation

 Length of  𝑢 =  �⃗� ȉ 𝑤 ȉ  sin  α 

 Direction of  𝑢 =  orthogonal to both �⃗� and 𝑤
 Verse of  𝑢 =  use the «right-hand rule»

or the «left-hand rule»
 whicever hand you are using to imagine your

vector space! (and reference frame)

42

43



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 8

recap: Vector Base

 Axes: set of n
lin. ind. vectors
( x,y,z )

 Any vector v
can be expressed in 
exactly 1 way as a linar
combination of these
vectors

 The weights are the 
coord of v in that base

y

x
z

recap: Reference Frame (or Space)

 n axes (vectors)
+
1 origin (point)

 Any vector v :
one linear comb. of the 
axes

 Any point p :
origin + one linear 
comb. of axes

y

x
z

o

(vector base)

44

45



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 9

Recap: Orthonormal Frames
Or Cartesian Frame

 Axes are unit vectors
and reciprocally
orthogonal

Recap: Handed-ness of a 
(Cartesian) frame
 They can be right- or left-handed

Use the same hand to imagine a cross product

𝑥 ×  𝑦 = 𝑧 
regardless!

z

x

y

z

x

y

𝑥 ×  𝑦 = 𝑧

46

47



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 10

3D videogames

Points, Vectors, Versors:
mini task and exercises
Part II

Marco Tarini

60°

30°

Problem: surface normal
(trivial)

“I have three points on a , b , c on a plane: find the 
normal nො of this plane (a versor)”
 Trace:

find any two
different vectors
on the plane
…

 Question: what
determines the direction
of nො ?

a

b

c

70

71



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 11

Problem: triangle area
(trivial)

“I have three points on a , b , c in space.
Find the area of the triangle connecting them”
 Hint:

it’s half the area
of a parallelogram

a

b

c

Vector orthogonalization

“Find a versor uො′ that is ortogonal to a given  nො such 
that it is as similar as possible to a given versor uො”

Solution:     uොᇱ = nො × uො × nො , then renormalize it.

vec3 n,u;
u = cross( cross( n , u ) , n );
u = normalize( u );

Vector3 n,u;
u = Vector3.Cross( Vector3.Cross( n , u ) , n );
u = u.normalized;

C#, with Unity

GLSL

FVector n,u;
u = FVector::CrossProduct( FVector::CrossProduct(n,u),n );
u.Normalize();

C++, with UE

Coding examples, in different languages:

72

73



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 12

Orthonormal base completion

“I have only two axes xො and yො of an orthonormal 
bases, how do I find the third vector zො ?”
 Data: xො, yො versors
 Hypotheses: xො and yො are already orthogonal
 Variant: yො is not exactly orthogonal to xො, but I 

want to change it the least to make it orthogonal 
(xො is to be kept constant)
(see previous problem)

Decompose a vector 
into components

Alternative solution
�⃗� ← 𝑛ො  ȉ  �⃗�  𝑛ො

�⃗� ← 𝑛ො × �⃗� × 𝑛ො       

�⃗�

𝑛ො �⃗�

 �⃗� + �⃗�

�⃗�

 Given a vector �⃗�
and a plane normal 𝑛ො ,
split �⃗� in the vector sum
�⃗� =  �⃗� + �⃗� with
 �⃗� orthogonal to the plane 

(= parallel to 𝑛ො )
 �⃗� parallel to the plane 

(= orthogonal to 𝑛ො )

try to see why this works

74

75



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 13

Decompose a vector 
into components

 A solution in 3 steps:
(1) 𝑘 ← �⃗�  ȉ  𝑛ො

(2) �⃗� ← 𝑘  𝑛ො

(3) �⃗� ← 𝑛ො  �⃗�  − �⃗�

�⃗�

𝑛ො �⃗�

 �⃗� + �⃗�

�⃗�

 Given a vector �⃗�
and a plane normal 𝑛ො ,
split �⃗� in the vector sum
�⃗� =  �⃗� + �⃗� with
 �⃗� orthogonal to the plane 

(= parallel to 𝑛ො )
 �⃗� parallel to the plane 

(= orthogonal to 𝑛ො )

𝑘 is a (signed) scalar: the extension of �⃗� along dir 𝑛ො
�⃗� is the component of �⃗� along 𝑛ො
�⃗� the component of �⃗� orthogonal to 𝑛ො

Line-Line “intersection”

“Given two 3D lines, find the two points on both 
lines that are as close as possible to each other”

(they are the same point, if the lines intersect!)

 Input: a point on line “A”  p and its direction d

a point on line “B”  p and its direction d

 Output: two points q and q

76

77



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 14

Ray-Plane intersection Ver1

“I shoot a laser from p in direction d toward a plane 
which contains points a b c. Which point q do I hit?”
 Hypotheses: a b c are not colinear (not on a line)
 Trace: 
 Find vector n orthogonal to plane, use cross product

(question for later: are magnitude and verse important?)

 Define q as a point on the laser (see Ray-Sphere inters.)
 Define q as a point on the plane (hint: the vector 

connecting it to any other point on the plane is 
orthogonal to n )

 Combine the two equations into one
 Extract the only incognita

Plane-plane intersection

“Given two 3D planes, find the line they share”
 Input: a point on plane “A”  𝐩 and its normal nො

a point on plane “B”  𝐩 and its normal nො

 Output: 
a point on the line 𝐪 and the line direction d

78

79



3D Video Games                                
02: Point and Vector Algebra (part 2)

2024-03-04

Marco Tarini                             
Unviersità degli studi di Milano 15

Shooting a walking target
(with a finite speed bullet) 1/2

“I shoot a bullet from p with velocity v . At which 
time the bullet will be the closest to a target 
currently in position q and moving with velocity w ? 
Where will bullet and target be, at that point?”

(useful, e.g., for a sniper AI “leading” a target)

 Data: p, q points,v and w vectors
 Hypothesis: nothing accelerates (everything keeps 

moving at a constant speed)

Shooting a walking target
(with a finite speed bullet) 2/2

Trace
 Position of bullet at time 𝑡 : p + 𝑡 v

 Position of target at time 𝑡 : q + 𝑡 w

 Squared distance between the two at time 𝑡 :
 p + 𝑡 v − (q + 𝑡 w) ଶ

=
 p − q + 𝑡 (v − w)  ଶ 

 Work on formulas (remember that v ଶ = v ȉ v ) 
find derivative for dt, 
equate derivative to 0, extract t

80

81


