
3D Video Games
02: Point and Vector Algebra (part 3)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 1

3D VideoGames - UniMi

Points, Vectors, Versors:
(final notes on programming)

Marco Tarini

Points, Vectors, Versors:
Internal representation

 n-tuple of scalar values (n is the dimension)
 for us (usually): n = 3 (at times, 2 or 4)
 they are the Cartesian coordinates of the point/vector

 e.g.: or:

 note: the same structure is often used to
represent points, vectors, and versors

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

48

50

3D Video Games
02: Point and Vector Algebra (part 3)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 2

Caveat (about coding):
one type, multiple semantics

 Many libraries/engines/languages opt to use
the same data type for 3D points, 3D vectors, 3D versors,
(plus, sometimes: colors, and more)
 alternatively, a library can use different types, e.g. Vector, Point, Versor

 Still, they should not be considered the same thing
 that’s nothing new:

likewise, we use the same scalar data types (“float”, “doubles”)
with widely different semantics (e.g. “weight”, “volume”, “temperature”…).

 It is up to the coder to operate on them accordingly
 e.g.: not ok to sum a temperature with a surface area
 e.g.: it’s ok to divide a weight by a volume (and get a specific weight)

 which operations do make sense on points, vectors, versors?
 the ones we have seen in their algebra !

Points, Vectors, Versors:
Internal representation

 same class for points, vectors, and versors
 this is done in many libs & languages, e.g.:

 and also: GLSL, HLSL, GLM, Eigen, VcgLib , three.js, …

class Vector3
https://docs.unity3d.com/ScriptReference/Vector3.html

class FVector
http://api.unrealengine.com/INT/API/Runtime/Core/Math/FVector/

vec3 Vector3d Point3d

shader languages C++ libraries

Vector3

JavaScript library

51

52

3D Video Games
02: Point and Vector Algebra (part 3)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 3

Classes for Points / Vectors / Versors
A few examples in C++ libraries

 GLM library (Graphics) : class vec3
 Unreal library (Videogames) : class VectorF
 Eigen lib (Linear Algebra) : class Vector3d
 VCG-Lib (Geometry processing) : class Point3f
 Point Cloud Lib (Geometry Processing) : class ON_3dVector
 openMesh for (Geometry processing) : class VectorT
 cgall for (Geometry Processing) : class Vector3
 CinoLib (Geometry Processing) : class vec3d
 OpenCV for (Computer Vision) : class Point3f
 bullet for (Physical Simulation) : class btVector3
 ODE for (Physical Simulation) : class dVector3

Classes for Points / Vectors / Versors:
Other examples in C++ like languages

 GLSL shader language from Chronos : type vec3
 HLSL shader language from DirectX : type float3
 Unity , C# (videogames): class Vector3
 three.js , JavaScript (graphics) : class Vector3

53

54

3D Video Games
02: Point and Vector Algebra (part 3)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 4

Programming with vector algebra:
the code looks like the expressions

 Concept (“on paper”):

 Code:
 Data types:

 Beginner’s
style code:

 What you
should do:

dragonPos.add(dir.scale(k));dragonPos.add(dir.scale(k));

Point3D dragonPos = …;
Versor3D dir = …;
float k = …;

Point3D dragonPos = …;
Versor3D dir = …;
float k = …;

dragonPos.x = dragonPos.x + dir.x * k ;
dragonPos.y = dragonPos.y + dir.y * k ;
dragonPos.z = dragonPos.z + dir.z * k ;

dragonPos.x = dragonPos.x + dir.x * k ;
dragonPos.y = dragonPos.y + dir.y * k ;
dragonPos.z = dragonPos.z + dir.z * k ;

dragonPos += dir * k ;dragonPos += dir * k ;

or (depending on the language)

𝐩 = 𝐩 + 𝑘 𝐝መ

Semantics associated to X,Y,Z:
still no standards for 3D games

 Unity: left-handed: X-right, Y-up, Z-forward
 Unreal: left-handed: X-forward, Y-right, Z-up
 3ds-Max: right-handed, Z-up
 Blender: left-handed, Z-up
 most VR systems: right-handed, Y-up
 OpenGL: (clip space) right-handed, Y-up
 DirectX: (clip space) left-handed, Y-down

personal opinion:
the most standard one,

among
3D modellers too

55

56

3D Video Games
02: Point and Vector Algebra (part 3)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 5

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

Vector3 pos = new Vector3 (…);

pos.x = pos.x + 2.5; // maybe ??
pos.y = pos.y + 2.5; // hmm…??

Vector3 pos = new Vector3 (…);

pos += Vector3.right * 2.5;

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

FVector pos = FVector(…);

pos.X += 2.5f; // maybe ??
pos.Y += 2.5f; // hmm…??

FVector pos (…);

pos += FVector::RightVector * 2.5f;

58

59

