02: Spatial Transforms (part I)

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics $-\bigcirc 01+\mathbf{D}$
lec. 5: Game Particle Systems 1
lec. 6: Game 3D Models DO
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
4

02: Spatial Transforms (part I)

A Spatial Transformations

is a function

- input:
- a point, or
- a vector, or
- a versor
- output:

the same type as the input

$$
\begin{aligned}
& q=f(p) \\
& v=f(u)
\end{aligned}
$$

6

02: Spatial Transforms (part I)

A Spatial Transformations

is a function

7

9

02: Spatial Transforms (part I)

10

Transforms in 3D games

- Each object of the game $\left\{\begin{array}{l}\text { a character, a spaceship, } \\ \text { a bullet, a house, a camera }\end{array}\right.$ is placed in the scene
- the virtual world
a light source, an explosion, a sound emitter, a spawn pos, ...anything at all!
- shared by all the current objects
- This is done by transforming that object
- That is, by applying a transform to all points, vectors, versors of its representation
- in all the corresponding assets
- (for meshes: this is done on-the-fly, during rendering, by the rendering engine)
- A transform is associated and stored to each object - in CG, it would be called its « modelling transform»

Each object in the game:
 we store it's transform

- The affine transformation T associated to an object in the game goes...
- from: its own «object space»
(or «local space», or «pre-transform space»)
- to: the common «world space» (or «global space», or «post-transform space»)
- in CG, T would be called its « modelling transform»

How do we internally model and store a spatial transform?

- Many answers are possible and valid!
- In Computer Graphics and other fields, a particular useful class of transformations is used: the Affine transformations
- They can conveniently be stored as a 4×4 matrices
- SPOILER: for 3D Video-Games, this is not the ideal solution. Instead, we use a subset or another of that class - A better class is the one termed, in math, a "similarity"
- Because the transforms used in games are still affine, we will first discuss how Affine Transformation work

14

Affine transformations

in a nutshell

- An affine transformation is just an arbitrary redefinition of the reference frame (orgin+axis)
- The object will be transformed by re
- To define affine transformation, just freely a new reference frame (or space):
- a new origin (a point)
- a new set of 3 axis (3 vectors)
- Objects (vectors \& points) will be transformed by reinterpreting their coordinates in the new reference frame

02: Spatial Transforms (part I)

16

Affine transformations
in a nutshell

17

18

19

Math-problem: switching reference frame

- Given
the local
reference $\{$ three "axis" vectors $\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}} \overrightarrow{\mathbf{z}}$
reference
frame - one "origin" point \mathbf{p}
and
$\underset{\substack{\text { expressed } \\ \text { in local } \\ \text { coords }}}{\text { en }}$ - a point $\mathbf{a}=\left(\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right)$ or vector $\overrightarrow{\mathbf{v}}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$ on the model
- Write an expression to find
- the corresponding point \mathbf{a}^{\prime} or vector $\overrightarrow{\mathbf{v}}^{\prime}$ but expressed in world space

20

Math-problem:
switching reference frame

$$
\begin{aligned}
& \mathbf{a}^{\prime}=\overrightarrow{\mathbf{p}}+a_{x} \overrightarrow{\mathbf{x}}+a_{y} \overrightarrow{\mathbf{y}}+a_{z} \overrightarrow{\mathbf{z}} \\
& \overrightarrow{\mathbf{v}}^{\prime}=v_{x} \overrightarrow{\mathbf{x}}+v_{y} \overrightarrow{\mathbf{y}}+v_{z} \overrightarrow{\mathbf{z}}
\end{aligned}
$$

Affine Transf: how to apply them
(in one slide)
points: vectors: versors: transforms:

X	X	X	M		t	
Y	Y	Y				
Z	Z	Z				
1	0	0		0		

23

Affine Transf: how to apply them

(in one slide) - [notes]

- Take the (x, y, z) cartesian coords of the point / vector / versor to be transformed
- Append a 4th "affine" coordinate w as
- 1,for points
- 0 , for vector (or versors - sadly, we can't discriminate)
- Terminology: the resulting 4D vector is the "homogeneous coordinates" of the point/vector
- Multiply the transform matrix M by this (column)

4D vector to get the transformed point / vector

- Note: as we wanted, points always become points, vectors (and versors) become vectors

02: Spatial Transforms (part I)

Why it works:

 the Matrix is...- ... a direct description
of the "starting" reference frame

26

02: Spatial Transforms (part I)

27

28

An affine transformation (in 3D)

is simply a 4×4 matrix

- General case :
3×3 submatrix
Rotation +
Scaling +
Shearing

- Equivalently, can be stored as:

Mat3x3 M and Vec3t

30

Affine transformations:

equivalent definitions

- a linear function: $f(\mathrm{p}+k \overrightarrow{\mathrm{v}})=f(\mathrm{p})+k f(\overrightarrow{\mathrm{v}})$

$$
f(h \vec{v}+k \overrightarrow{\mathrm{w}})=h f(\vec{v})+k f(\overrightarrow{\mathrm{w}})
$$

- a transform which can be expressed as pre-multiplication of the transformed point/vector in affine coords by a 4×4 matrix M
having as last row: 0,0,0,1
- a change of reference frame $\left\{\begin{array}{l}\text { origin } \\ + \text { set of } 3 \text { axes }\end{array}\right.$ from a given source frame
 to a given destination frame

Affine Transforms:

what do they do in practice

- Rotations
- Translations
- (of points - directions are unaffected)
- Scaling
- uniform or not uniform
- Shearing (aka skewing)

- ... and their combinations

(they don't change,
the angles i.e. the shape)
closed w.r.t. compisition
(we just multiply the matrices)

34

02: Spatial Transforms (part I)

36

37

In CG, Transforms are used for many other purposes too (see CG course)

38

CG students please take note:
3D transformations are not necessarily 4×4 matrices

- a 4×4 Matrix is certainly one way to represent one class of 3D transformation
- specifically: affine transformations
- sure, it's a useful class, and it's a good representation
- elegant, sound, convenient...
- in CG, this is so established that "matrix" is basically used a synonym of "transformation". E.g.: the "view matrix"
- to learn more, see a Computer Graphics course
- In games, this method is not ideal
- Q: What is the ideal way to represent something?
- A: It depends on what you need to do with it!
- What games need to do with transformations?

What do 3D games need to do with a transformations?

- store them
- apply them
- composite them
- invert them
- interpolate them
- and, design them

47

We want transformations to be...

- compact to store
- what's the memory footprint for one transform?
- fast to apply
- how quick is it to apply it to one (or 99999) points / vectors / versors?
- fast/accurate to composite
- given 2 transforms, is it easy to find their composition ?
- (note: transform composition is not commutative!)
- fast to invert
- how easy or fast is to find or apply the inverse transformation?
- easy to interpolate
- given 2 transforms, is it possible/easy to interpolate them?
- and, how «good» is the result?
- Intuitive to author / edit
- how easy is it for modellers / sceners / animators / etc to define one?

02: Spatial Transforms (part I)

Why we need fast compositions:
Moving objects in a 3D Game

- We move the objects in the scene by changing the associated transform
- Which is done by:
- the scener / level designer \leftarrow at design time
- the game physics
- the Al scripts
- the control scripts (press left arrow: move left)
- To apply transform $\mathrm{T}_{\text {new }}$ to an object, we substitute its transfrom $\mathrm{T}_{\text {old }}$ with $\mathrm{T}_{\text {new }} \stackrel{ }{\circ} \mathrm{T}_{\text {old }}$

53

54

55

02: Spatial Transforms (part I)

58

02: Spatial Transforms (part I)

60

Recap: what do 3D games need to do with a transformations?

- store
- apply
- composite
- invert
- interpolate
- (and, design/author)

02: Spatial Transforms (part I)

Recap:

we want transformations that are ...

- compact to store
- With a 4×4 Matrix: 16 numbers $: 8$
- convenient to apply (matrix: 16 numbers $(:)$)
- With a 4×4 Matrix: matrix-vector product (not too bad)
- But: versors become vectors $(:)$
- good to composite
- With a 4×4 Matrix: matrix-matrix products (~128 scalar operations!)
- Plus: they become distorted after many compositions
- fast to invert
- With a 4×4 Matrix: matrix inversion. Not the quickest!
- easy to interpolate
- With a 4×4 Matrix: we can interpolate easily each of 16 numbers, but results aren't the expected one: distortions
- i.e. the interpolation between of 2 rigid transformation is not rigid
- intuitive to author / define
- With a 4×4 Matrix: not always. Need to specify all vectors axes

62

63

Which component do we need supported in a 3D game?

- Translation : necessary
- and trivial
- Rotation: necessary.
- and not that trivial (in 3D)
- will cover this in the next lecture (for now, rotation = black-box function)
- Uniform scaling : may be useful
- potentially useful, but...
- alternative: scale 3D models once after import - maybe that's all you need
- Non uniform scaling : may be useful too
- but problematic - see later
- alterative: same as above
- Shear: least useful
- and inconvenient: let's do ourselves a favor and NOT support it

65

67

02: Spatial Transforms (part I)

70

71

02: Spatial Transforms (part I)

72

Effect of a transform
on different things

73

Effect of a transform on different things

- Rotation:
- Applies to Points, Vectors, Versors (just the same)
- Uniform Scaling:
- Applies to Points, Vectors (just the same)
- Leaves Versors unaffected!
- Translation:
- Applies to Points only.
- Leaves Vectors, Versors unaffected!

77

78

79

3D Video Games

two ways to see a transformation:		
a change of state	a state	
Translation the act of displacing (moving) an object	OR	Position where the object currently is
Rotation the act of spinning an object, reorienting it	OR	Orientation how object is currently oriented, its facing
Scaling the act of enlarging or shrinking an object	OR	Size how big the object currently is (1 = original size)

80

(1U) UNREAL ENGINE Translation the vector of which the object is displaced	(0) Position where the object currently is
Rotation how much the object is spun, re-orienting it	Orientation where the object is currently facing toward
Scale by how much the object is enlarged or shrunk	Size how big the object currently is (1 = original size)

82

A transformation class (example) 1/4

Fields

```
class Transform
    // fields:
    float s; // scaling/size
    Rotation r; // rotation/orientation used as a black-box for now
    Vector3 t; // translation/position
```

 See next lecture!