
3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 1

3D videogames

Spatial transforms
for 3D games

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 
lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

2

4

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 2

points
vectors
versors

Recap:
things in games
are made of

A Spatial Transformations
is a function

 input:
 a point, or
 a vector, or
 a versor

 output:
the same type
as the input

p

f

f

f
q

q = (p)
v = (u)

f
f

5

6

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 3

A Spatial Transformations
is a function

f

f

f

point

versor

vector

point

versor

vector

Transform

The Virtual
Scene

Some
Object

7

9

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 4

Transform
A

Transform
B

The Virtual
Scene

fA fB fC fD

Basic concept: associate (and store)
a Transofrm to each object in the game

world

10

11

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 5

Transforms in 3D games

 Each object of the game
is placed in the scene
 the virtual world
 shared by all the current objects

 This is done by transforming that object
 That is, by applying a transform to all

points, vectors, versors of its representation
 in all the corresponding assets
 (for meshes: this is done on-the-fly, during rendering,

by the rendering engine)

 A transform is associated and stored to each object
 in CG, it would be called its « modelling transform »

a character, a spaceship,
a bullet, a house, a camera,
a light source, an explosion,
a sound emitter, a spawn pos,
…anything at all!

Each object in the game:
we store it’s transform
 The affine transformation T associated to an object

in the game goes…
 from: its own «object space»

(or «local space» , or «pre-transform space»)
 to: the common «world space»

(or «global space» , or «post-transform space»)

 in CG, T would be called its « modelling transform »

12

13

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 6

How do we internally model and store
a spatial transform?

 Many answers are possible and valid!
 In Computer Graphics and other fields, a particular

useful class of transformations is used:
the Affine transformations

 They can conveniently be stored as a 4×4 matrices
 SPOILER: for 3D Video-Games,

this is not the ideal solution.
Instead, we use a subset or another of that class
 A better class is the one termed, in math, a “similarity”

 Because the transforms used in games are still affine,
we will first discuss how Affine Transformation work

Affine transformations
in a nutshell

 An affine transformation is just an arbitrary
redefinition of the reference frame (orgin+axis)
 The object will be transformed by re

 To define affine transformation,
just freely a new reference frame (or space):
 a new origin (a point)
 a new set of 3 axis (3 vectors)

 Objects (vectors & points) will be transformed by
reinterpreting their coordinates
in the new reference frame

14

15

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 7

Affine transformations
in a nutshell

f

Affine transformations
in a nutshell

f

16

17

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 8

Local Space

World Space

Transform

𝐩

𝐲⃗

Given:
three “axis” vectors 𝐱 𝐲⃗ 𝐳⃗
one “origin” point 𝐩
and
any point 𝐚 or vector 𝐯
on the model

Write an expression that
expresses the same
point or vector
in world space

𝐳⃗

𝐱

𝑥 𝑦

𝑧

the local
reference
frame

Note: 𝐱 𝐲⃗ 𝐳⃗ and 𝐩 are
points/vectors expressed
in WORLD SPACE coords

𝐚 , 𝐯 are
points/vectors expressed
in LOCAL SPACE coord

Expressed in
local coords

World
Space

f

«Modelling» trasform
as a change of reference frame

Object
Space

18

19

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 9

Math-problem:
switching reference frame

 Given
 three “axis” vectors 𝐱 𝐲⃗ 𝐳

 one “origin” point 𝐩
and

 a point 𝐚 =

𝑎𝒙

𝑎𝒚

𝑎𝒛

 or vector 𝐯 =

𝑣𝒙

𝑣𝒚

𝑣𝒛

on the model

 Write an expression to find
 the corresponding point 𝐚ᇱ or vector 𝐯ᇱ

but expressed in world space

the local
reference

frame

Note: 𝐱 𝐲⃗ 𝐳⃗ and 𝐩 are
points/vectors expressed
in WORLD SPACE coords

𝐚 , 𝐯 are
points/vectors expressed
in LOCAL SPACE coord

expressed
in local
coords

Math-problem:
switching reference frame

𝒙 𝒚 𝒛

𝒙 𝒚 𝒛

these equations can be written concisely using matrix notation…

20

21

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 10

Affine Transf: how to apply them
(in one slide)

M
0
0
0
10 0 0

t

points: versors:vectors:

X
Y
Z
1

X
Y
Z
0

X
Y
Z
0

transforms:

Affine Transf: how to apply them
(in one slide) – [notes]

 Take the (x,y,z) cartesian coords of the
point / vector / versor to be transformed

 Append a 4th “affine” coordinate w as
 1 , for points
 0 , for vector (or versors - sadly, we can’t discriminate)
 Terminology: the resulting 4D vector is the

“homogeneous coordinates” of the point/vector

 Multiply the transform matrix M by this (column)
4D vector to get the transformed point / vector
 Note: as we wanted, points always become points,

vectors (and versors) become vectors

23

24

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 11

Why it works:
the Matrix is…

 …a direct description
of the “starting” reference frame

0 0 0 1

M =

The Matrix-Vector product is…

 n dot products
of its rows with the vector

 but also…

· =

A

D

C

B

·

·

·

·

A

B

C

D

25

26

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 12

The Matrix-Vector product is…

 …a linear combination of its columns

· =

x

z

y

w

x +· y +· z +· w ·

A DCB A DCB

Local Space

World Space

Transform

x

z⃗

𝐩

y

0 0 0 1

x y z⃗ 𝐩
𝐌 =

27

28

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 13

An affine transformation (in 3D)
is simply a 4×4 matrix

 General case :

 Equivalently, can be stored as:
Mat3x3 M and Vec3 t

M
0
0
0
10 0 0

t

vector 3

3x3 submatrix

Rotation +
Scaling +
Shearing

Traslation

always
0,0,0,1

Affine transformations:
equivalent definitions

 a linear function:

 a transform which can be expressed as pre-multiplication
of the transformed point/vector in affine coords
by a 4×4 matrix M
having as last row: 0,0,0,1

 a change of reference frame
from a given source frame
to a given destination frame

𝑓 ℎv + 𝑘 w = ℎ 𝑓 v + 𝑘 𝑓(w)

origin
+ set of 3 axes

𝑓(p + 𝑘 v) = 𝑓(p) + 𝑘𝑓(v)

not degenerate

30

33

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 14

Affine Transforms:
what do they do in practice

 Rotations
 Translations
 (of points – directions are

unaffected)
 Scaling
 uniform or not uniform

 Shearing (aka skewing)

 … and their combinations

They include all
“similitudes”
or “conformal transform”
(they don’t change,
the angles i.e. the shape)

closed w.r.t. compisition
(we just multiply the matrices)

they include
all “isometries”
aka “isometric transform”
aka “rigid transforms”

GUI tools to let an artist choose
an affine transform in 2D

these familiar controls (plus drag-and-drop to translate)
can be used to specify any affine transformation in 2D

[DEMO]

34

35

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 15

GUI tools to determine
an affine transform in 2D

 2D gizmos to specify an affine transformations

rotation
horizontal
shear

vertical
shear

uniform
scaling

horizontal
scaling

vertical
scaling

Affine transforms
everywhere (in CG)

Clip
Space

«Projection»
Transform

Tp

View
Space

«View»
Transform

Tv

World
Space

«Model»
Transform

Tm

Object
Space

Transformation pipeline in Rendering (see CG course)

36

37

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 16

In CG, Transforms are used
for many other purposes too (see CG course)

Clip
Space

«Projection»
Transform

Tp

View
Space

«View»
Transform

Tv

World
Space

«Model»
Transform

Tm

Object
Space

CG students please take note:
3D transformations are not necessarily 4×4 matrices

 a 4×4 Matrix is certainly one way to represent
one class of 3D transformation
 specifically: affine transformations

 sure, it’s a useful class, and it’s a good representation
 elegant, sound, convenient…
 in CG, this is so established that “matrix” is basically used a

synonym of “transformation”. E.g.: the “view matrix”
 to learn more, see a Computer Graphics course

 In games, this method is not ideal
 Q: What is the ideal way to represent something?
 A: It depends on what you need to do with it!
 What games need to do with transformations?

38

46

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 17

What do 3D games need to do
with a transformations?

 store them
 apply them
 composite them
 invert them
 interpolate them

 and, design them

We want transformations to be…

 compact to store
 what’s the memory footprint for one transform?

 fast to apply
 how quick is it to apply it to one (or 99999) points / vectors / versors?

 fast/accurate to composite
 given 2 transforms, is it easy to find their composition ?
 (note: transform composition is not commutative!)

 fast to invert
 how easy or fast is to find or apply the inverse transformation?

 easy to interpolate
 given 2 transforms, is it possible/easy to interpolate them?
 and, how «good» is the result?

 Intuitive to author / edit
 how easy is it for modellers / sceners / animators / etc to define one?

47

48

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 18

Why we need fast compositions:

Moving objects in a 3D Game

 We move the objects in the scene by
changing the associated transform

 Which is done by:
 the scener / level designer
 the game physics
 the AI scripts
 the control scripts

(press left arrow: move left)
 …

 To apply transform T௡௘௪ to an object,
we substitute its transfrom T௢௟ௗ with T௡௘௪ ∘ T௢௟ௗ

at game execution time

at design time

composition

T1

World Space

T0

Object Space

Compositing
transformationsold state

new movement

49

53

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 19

T1

World Space

T0

Object Space

Compositing
transformations

new state

T1∘T0

Object Space

T2T1

World Space

T0 T2∘T1∘T0

Compositing
transformations

another
movement

new uptaded state
(after the movement)

T1∘T0

54

55

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 20

Why we need transform interpolation:

Animations

time 100

time 200

time 150

T1

T2

Ti ?

Why we need transform inversions : ex1

«Where has Bob been hit?»

T0

ZAP

???

Bob’s space

Step 1: find hit-position 𝐩, (from 𝐪, d෠ , etc.)

Step 2: which point of the model has been hit?
Answer: Tିଵ(𝐩)

in global space!

in local space!

ouch

T1

𝐩
𝐪

d෠

world space

rifle space

58

59

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 21

Why do we need to invert transformations: example 2

the AI point of view

T

T

-1

world spacelocal space of ship 1

Recap: what do 3D games need to do
with a transformations?

 store
 apply
 composite
 invert
 interpolate

 (and, design/author)

60

61

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 22

Recap:
we want transformations that are …
 compact to store

 With a 4x4 Matrix: 16 numbers 
 convenient to apply (matrix: 16 numbers )

 With a 4x4 Matrix: matrix-vector product (not too bad)
 But: versors become vectors 

 good to composite
 With a 4x4 Matrix: matrix-matrix products (~128 scalar operations!)
 Plus: they become distorted after many compositions

 fast to invert
 With a 4x4 Matrix: matrix inversion. Not the quickest!

 easy to interpolate
 With a 4x4 Matrix: we can interpolate easily each of 16 numbers,

but results aren’t the expected one: distortions
 i.e. the interpolation between of 2 rigid transformation is not rigid

 intuitive to author / define
 With a 4x4 Matrix: not always. Need to specify all vectors axes

keep the components
separated

a Rotation
+ a Scaling
+ a Translation
+ Shearing

a Transformation =

uniform or not

no need!

no need!

62

63

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 23

Which component do we need
supported in a 3D game?

 Translation : necessary
 and trivial

 Rotation : necessary.
 and not that trivial (in 3D)
 will cover this in the next lecture (for now, rotation = black-box function)

 Uniform scaling : may be useful
 potentially useful, but…
 alternative: scale 3D models once after import – maybe that’s all you need

 Non uniform scaling : may be useful too
 but problematic – see later
 alterative: same as above

 Shear : least useful
 and inconvenient: let’s do ourselves a favor and NOT support it

A math classification of
spatial transformations

note:
each class is closed w.r.t.
cumulation, and (when they are invertible) inversion

all spatial transformations

isometries
(aka: rigid transf.
(aka ,informally:

“roto-translations”)

affine
transformations
(aka: linear transf.)

similarities
(aka: conformal transf.)

rotations + translations
+ any scaling + shears

Rotations + Translations
+ uniform scaling

Rotations + Translations

Representable by:
a 4x4 matrix

with last row 0,0,0,1

We use
this one!

65

67

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 24

Transforms =
Translations

Transforms =
Translations + Rotations

70

71

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 25

Transforms =
Translations + Rotations + Scalings

translate:

scale:

rotate:

points:

vectors:

versors:

Effect of a transform
on different things

✓✓✓

✗✓✓

✗✗✓

72

73

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 26

Effect of a transform
on different things

 Rotation:
 Applies to Points, Vectors, Versors (just the same)

 Uniform Scaling:
 Applies to Points, Vectors (just the same)
 Leaves Versors unaffected!

 Translation:
 Applies to Points only.
 Leaves Vectors, Versors unaffected!

T1

World Space

T0

Object Space

Trasformations are used with
two different meanings

this transformation
encodes

a (spatial) state

this transformation
encodes

a change of state

75

77

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 27

Local Space

World Space

T0 a spatial
state

Pre-Transform

Post-Transform

(when local = global)

Or, equivalently…

a change of
state

78

79

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 28

two ways to see a transformation:

Translation
the act of displacing
(moving) an object

Rotation
the act of spinning an
object, reorienting it

Scaling
the act of enlarging

or shrinking an
object

Position
where the object

currently is

Orientation
how object is currently

oriented, its facing

Size
how big the object

currently is
(1 = original size)

OR

OR

OR

a change of state a state

Translation
the vector of which

the object is displaced

Rotation
how much the object is spun,

re-orienting it

Scale
by how much the
object is enlarged

or shrunk

Position
where the object

currently is

Orientation
where the object

is currently facing toward

Size
how big the object

currently is
(1 = original size)

80

81

3D Video Games
02: Spatial Transforms (part I)

2024-03-07

Marco Tarini
Unviersità degli studi di Milano 29

Translation
the vector of which

the object is displaced

Rotation
how much the object is spun,

re-orienting it

Scale
by how much the
object is enlarged

or shrunk

Position
where the object

currently is

Orientation
where the object

is currently facing toward

Size
how big the object

currently is
(1 = original size)

A transformation class (example) 1/4
Fields
class Transform {

// fields:
float s; // scaling/size
Rotation r; // rotation/orientation
Vector3 t; // translation/position

...
}

class Transform {
// fields:
float s; // scaling/size
Rotation r; // rotation/orientation
Vector3 t; // translation/position

...
}

used as a black-box for now

See next lecture!

82

83

