03: 3D Rotations. Part 1

1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics $\bigcirc \bigcirc$ + $+\boldsymbol{O}$
lec. 5: Game Particle Systems 1
lec. 6: Game 3D Models DO
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
2

4

Plan for this lecture (and the next two)

- We will discuss the internal representations for 3D rotations
- We want representations that allow easy / efficient
- storage
- application (to points, vectors \& versors)
- composition (with another rotation)
- inversion
- interpolation (with another rotation)
- assignment (creation by humans, e.g., by manual specification)
- We will see several solutions, with pros and cons

5

Preamble:

representing translations in 3D

- Trivial:
displacement vector (3 scalars)!
- perfect under all criteria (exercise: verify)

6

Preamble:

representing rotations in 2D

- Trivial!

Preamble:

representing rotations in 2D

- Trivial representation:
(a «pseudo-scalar» one angle (a dimensionless scalar) (as it changes sign if we mirror the scene)
- Semantic (traditionally):
- If positive: counter-clockwise
- If negative: clockwise

- Choices:
- unity of measure: degree or radians?
- which interval? E.g. [0..360) or (-180..+180]

8

Preamble:

representing rotations in 2D

- Is it convenient to...
- Store?
\checkmark it's one scalar
- Apply?
\checkmark easy \& fast:
$r_{\alpha}\binom{x}{y}=\binom{\cos (\alpha) x-\sin (\alpha) y}{\sin (\alpha) x+\cos (\alpha) y}$
- Invert?
\checkmark Just flip the sign
- Cumulate?
\checkmark Just sum the two angles (modulo 360°)
- Design / manually assign? \checkmark easy.
E.g. $0^{\circ}=$ east. $90^{\circ}=$ north. $180^{\circ}=$ west. $270^{\circ}=$ South.

9

03: 3D Rotations. Part 1

Preamble:

representing rotations in 2D

- Is it convenient to...
- Interpolate?

$$
\alpha(1-t)+\beta t
$$

Can we just... $\operatorname{mix}(\alpha, \beta, t)$

- Example: mid-way between North $=90^{\circ}$ and West $=180^{\circ}$ $\operatorname{mix}\left(90^{\circ}, 180^{\circ}, 0.5\right)=135^{\circ}=$ NW... checks out!
- But consider this case:

Time $=1$

Time $=2$

Time $=3$

10

Preamble:

representing rotations in 2D

- Which is the correct interpolation?

Preamble:

representing rotations in 2D

- Is it convenient to... interpolate? $\sqrt{ }$ Yes, but,
- Problem: angles α and $\alpha+360^{\circ}$ are equivalent $\alpha \cong \alpha+360 \cong \alpha+k 360^{\circ} \quad($ any $k \in \mathbb{Z})$
- General solution:
to interpolate between two rotations α and $\beta \ldots$

1. Find β^{\prime} equivalent to β that is most similar to α (here: choose between β and $\beta-360^{\circ}$)
2. Linear interpolation (mix) between α and $\beta^{\prime}(\operatorname{not} \beta)$

- We will encounter the same problem/solution again...

Preamble:

representing rotations in 2D

- How to go angle $\rightarrow 2$-versor

Preamble:

representing rotations in 2D

- How to go 2D-versor \rightarrow angle

pro tip: use atan2 in any language: $\alpha=\operatorname{atan} 2(y, x)$
14

Preamble:

representing rotations in 2D

- How to go 2D-vector \rightarrow angle

still use atan2! The scale is irrelevant: $\alpha=\operatorname{atan} 2(y, x)$

03: 3D Rotations. Part 1

16

3D rotations:
 how many dimension?

(clearly, they include the identity too)

03: 3D Rotations. Part 1

Solution 1:

rotations are 3×3 matrices

- A rotation
a 3×3 matrix

R

orthonormal,
determinat $=+1$

- Application

$$
=
$$

matrix / vector multiplciation

input

Rotations as 3×3 matrices
No translation.
i.e: the origin stays fixed.
i.e.: the rotation axis

- Rotation =
the 3×3 submatrix of a 4×4 «pure» rotation affine matrix

Note: by combining with translations, we can obtain rotations around any point

Rotations as 3×3 matries

- Wasteful in RAM (9 scalars, versus a minimum of 3)
- Easy to apply (matrix-vector prod: 9 mults)
- Relat. easy to compose (matrix-matrix prod: $27 \times$ mult)
- Interpolate: problematic:
$k R_{0}+(1-k)=R_{1}=\square$

20

Rotations as 3×3 matrices (9 scalars): compositions

- Multiplying matrices composites the rotation
- remember: neither matrix-matrix product, nor composition of 3D rotations, is commutative!
- e.g.: $\mathrm{R}_{\text {TOT }}=\mathrm{R}_{0} \cdot \mathrm{R}_{1}$
- rotate as R_{1} followed by R_{0}
- with $R_{0} \cdot R_{1}$ rotation matrices
- i.e. orthonormal matrices with det $=1$
- $\mathrm{R}_{\text {TOT }}$ is a rotation matrix too, in theory
ⓘn practice, approximation errors can break that - especially after long sequences of compositions.

23

Rotations as 3×3 matrices (9 scalars)
A useful property

- its three columns encode the three versors representing the X, Y, Z axis of the local space expressed in global space
- i.e. the world-space versors representing local right, upward, forward (in Unity) or local forward, right, upward (in Unreal engine)

Rotations as 3×3 matries:

Inversion

$\cdot \hat{x} \hat{y} \hat{z}=$

1	0	0
0	1	0
0	0	1

$R T \cdot R=1$

- For rotation matrices:
to transpose = to invert

Rotations as 3×3 matrices (9 scalars)
A useful property

- its three rows encode the three versors representing the X, Y, Z axis of the global space expressed in local space
- i.e. the three local-space versors representing the global eastward, upward, northward directions (for example)

03: 3D Rotations. Part 1

Representations of 3D rotations

- 3×3 matrices
- Euler angles
- the most intuitive way to express a rotation
- e.g., well understood by digital artists!

03: 3D Rotations. Part 1

Rotations as Euler angles (3 scalars)

- Any 3D rotation can be expressed as:
- a rotation around X axis (by α degrees), followed by:
- a rotation around Y axis (by β degrees), followed by :
- a rotation around Z axis (by γ degrees):
- Angles $\alpha \beta \gamma$:
"Euler angles" of a specific rotation
- therefore: the "coordinates" of that rotation
this order (X-Y-Z) is chosen arbitrary but once and for all! (in a given game engine / lib / etc)

Rotations as Euler angles (3 scalars)

- In nautical / aeronautical language, the three angles have names:

pitch

yaw
(beccheggio)
(imbardata)

03: 3D Rotations. Part 1

31

Rotations as Euler angles (3 scalars)

- Is it 1:1 ?
- 1 rotation $\Leftrightarrow 1$ euler angle triplet ?
- Almost
- assuming angles are properly bounded (exercise: how?)
- Ugly exception:
"GIMBAL LOCK"
- when 1st rotation makes the axes of the next two axes coincide
- this cannot be avoided, no matter how axes are chosen

Rotations as Euler angles (3 scalars)

- Conciseness: perfect! 3 scalars for 3 DOF
- Application : a bit work-intensive
- three rotations in succession
- Interpolation : you can do that...
- just interpolate the three angles
\ (remember to always "pick the shortest path" whenever interpolating angles: that is, must take in account the $\alpha \approx \alpha+360 k$ equivalence)
...but results won't always be nice!
- Composite / invert: not easy nor immediate...

Representations of
3D rotations

- 3x3 matrices
- Euler Angles
- Axis + angle
- Most common way in physics (and game physics)

36

Rotations as axis \& angle

- Any rotation can be expressed as:
- one rotation by some angle around some axis \qquad

- Angle: a scalar
- Axis: a versor (3 scalars)
- note: the axis is considered to pass around the origin. For the more general case, combine with translations.

Rotations as axis \& angle

- Compactness: good, 4 scalars
- Just one more than bare minimum
- Ease of application: not too good $(:)$
- Ways include: switch to 3×3 matrix (exercise: how to)
- Switch to a quaternion: see later
- "Rodrigues' rotation formula" (look it up)
- Note: they all require trigonometric function (sin, cos)
- Invert: super easy / quick
- just flip the angle sign or the axis vector
- question: what if both?
answer: Rotation is inverted twice: it's back to the same rotation again!

```
;
```

38

Rotations as axis \& angle: equivalent representations
axis
angle

- Therefore: $\left(a_{x}, a_{y}, a_{z}, \alpha\right)$ and $\left(-a_{x},-a_{y},-a_{z},-\alpha\right)$
represent the same rotation
- Any rotation has two equivalent representations in this format
- except the identity, which has infinitely many: angle $\alpha=0$, with any axis $\hat{\mathrm{a}}=\left(a_{x}, a_{y}, a_{z}\right)$
- This is always a bit inconvenient!
- Complicates interpolation ("shortest path" necessary)
- Complicates testing for equality/similarity, etc.

Rotations as axis \& angle

- Compositing rotations:
not at all immediate or easy to do $:$:
- Interpolating rotations: very good!
- Just interpolate axis and angle separately
- Some caveat:

A 1) shortest path for axes: first, flip either rotation (both its axis \& angle) when this makes the two axes closer (how to test?)

1. 2) shortest path for angles: as usual, angles must then be interpolated... «modulo 360° »,
. 3) interpolate between axes requires SLERP or NLERP (when interpolating versors)
A 4) beware degenerate cases (opposite axes); point 1 avoids this

- best results! Usually produces the "expected" intermediate rotation

40

Rotations as axis and angle, variant: as axis times angle

Sometimes called
«pseudo-vector»

- axis: â (versor, $\|\hat{a}\|=1$)
- angle: α (scalar)
- can be represented as one vector \vec{a} (3 scalars) $\overrightarrow{\mathrm{a}}=\alpha \hat{\mathrm{a}}$
- angle $\alpha=\|\vec{a}\|$
- axis $\hat{a}=\vec{a} / \alpha$
- note: when $\alpha=0$, the axis is lost... it's ok, we don't need it!
- more compact, but otherwise equivalent
- actually, better:
we now have only 1 representation per rotation (why?)
... including the identity (why?)

03: 3D Rotations. Part 1

42

Representations of 3D rotations

- 3x3 matrices
- Euler angles
- Axis, Angle
- Quaternions

Next lecture!

