```
Course Plan
                today:
                    QUATERNIONS! 1⁄2
    lec. 1: Introduction
                                O
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games
```

44

A flashback:

Complex Numbers in a nutshell 1/3

- It all starts with a «fantasy» assumption, which is: there is an imaginary number i such that $i^{2}=-1$
- And for any other purpose, i behaves just like a (non-zero) Real number
- Consequences: real part ${ }^{\text {imaginary part }}$
- We now have number of the form $a+b i$, with $a, b \in \mathbb{R}$, called complex numbers (the set is \mathbb{C})
- The algebra of complex numbers (how to sum, multiply, invert them...) is simply determined by the «fantasy» assumption above

A flashback:

Complex Numbers in a nutshell 2/3

- For example, sum: real part \quad imaginary part

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

- For example, product (remembering $\left.i^{2}=-1\right)$:
$(a+b i) *(c+d i)=(a c-b d)+(a d+b c) i$
- For example, inverse (check):

$$
(a+b i)^{-1}=\frac{(a-b i)}{a^{2}+b^{2}}
$$

- What is interesting to us is the geometric interpretation of these objects \& operations

A flashback:

Complex Numbers in a nutshell $3 / 3$

- Geometric interpretation:
- $a+b i$ represents the vector/point (a, b)
- Complex sum = vector sum

- Complex conjugate $=$ mirroring with the Real axis (horizontal)
- Product = add angles (with Real axis), multiply magnitudes
- Therefore,
- product with a unitary (magnitude =1) complex number is a 2 D rotation around origin
- A complex number $r \in \mathbb{C}$ with $\|r\|=1$ represents a 2 D rot; multiply a vector $(x+y i)$ with r means to rotate it

Wouldn't it be nice to have the same for 3D rotations?

03: 3D Rotations. Part 2

Quaternions

- New «fantasy» assumption:

	\times	i	j	k	
as a					
table:	i	-1	$+k$	$-j$	
	j	$-k$	-1	$+i$	
	k	$+j$	$-i$	-1	

there are three
different "imaginary"
$i^{2}=k^{2}=j^{2}=-1$
numbers i, j, k such that:

- for any other purpose,
$i j=k, \quad j i=-k$ $j k=i, \quad j k=-i$
$k i=j, \quad k j=-j$
i, j, k behave like real numbers
- Consequences:
- We now have number of the form $a+b j+c k+d$, with $a, b, c, d \in \mathbb{R}$, called Quaternions (their set is \mathbb{H})
- The algebra of quaternions (how to sum, multiply, invert them...) is simply determined by the «fantasy» assumption
- Again, what is interesting to us is the geometric interpretation...

Quaternions: how to write them (three equivalent ways)

- Algebraic form: $a i+b j+c k+d$
- often, omitting the zeros, e.g. $i+2 k$ is a quaternion
- As vectors of $\mathbb{R}^{4}:(a, b, c, d)$
- As vector $\&$ scalar pair: (\vec{v}, d)

- Conjugate of a quaternion:
invert the sign of the imaginary parts

Quaternions: algebra

$q \in \mathbb{H}$

$$
\mathrm{q}=a i+b j+c k+d
$$

- Sum, Scale, Interpolate, etc.:
- Trivial
- Magnitude

$$
\begin{aligned}
& \|\mathrm{q}\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} \\
& \|\mathrm{q}\|^{2}=a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

- «unitary» if it's 1

51

Quaternions: algebra

$$
\mathrm{q} \in \mathbb{H} \quad \mathrm{q}=a i+b j+c k+d
$$

- Product: just apply «fantasy» assumptions
- Observe: product is not commutative (nor anticommut.)
- (see next 3 slides for the math)
- «Conjugate»:
- like for complex numbers: $\overline{\mathrm{q}}=-a i-b j-c k+d$
- Inverse: (like for complex numbers) $\mathrm{q}^{-1}=\overline{\mathrm{q}} /\|\mathrm{q}\|^{2}$ - For unitary quat, it's just the conjugate

Quaternions: geometric interpretations

- A quaternion $\mathrm{q}=(\overrightarrow{\mathrm{v}}, d)$ represents:
- the 3D point / vector / versor $\overrightarrow{\mathrm{v}}$, when $d=0$
- a 3D rotation, when q is unit, i.e. $\|\mathrm{q}\|^{2}=\|\overrightarrow{\mathrm{v}}\|^{2}+d^{2}=1$
- neither, otherwise
- If q is a rotation and p is a point $(\mathrm{q}, \mathrm{p} \in \mathbb{H})$ then...
- $\mathrm{q} \cdot \mathrm{p} \cdot \overline{\mathrm{q}}$ is the rotated point / vector
- $\overline{\mathrm{q}}$ is the inverse rotation
- (so, $\overline{\mathrm{q}} \cdot \mathrm{p} \cdot \mathrm{q}$ is point p rotated... in the other direction)
- $\mathrm{q}_{0} \cdot \mathrm{q}_{1}$ is the composited rotation (first q_{1} then q_{0})

Rotation composition?
 Quaternion multiplication!

$\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{p} \in \mathbb{H}$ p represents a point
q_{0}, q_{1} represent rotations
p rotated by q1, rotated by q0
p rotated by q1
$\mathrm{q}_{0} \cdot\left(\mathrm{q}_{1} \cdot \mathrm{p} \cdot \overline{\mathrm{q}}_{1}\right) \cdot \overline{\mathrm{q}}_{0}$
product is associative (like for complex numbers)

	$\mathrm{q}_{0} \cdot\left(\mathrm{q}_{1} \cdot \mathrm{p} \cdot \overline{\mathrm{q}}_{1}\right) \cdot \overline{\mathrm{q}}_{0}$
rod	
(like for	$\left(\mathrm{q}_{0} \cdot \mathrm{q}_{1}\right) \cdot \mathrm{p} \cdot\left(\overline{\mathrm{q}}_{1} \cdot \overline{\mathrm{q}}_{0}\right)$
$\overline{\mathrm{r}} \cdot \overline{\mathrm{s}}=\overline{\mathrm{s} \cdot \mathrm{r}}$ es of quaternions)	

commutative)

3D Rotations as Quaternions

- quaternion q representing the 3D rotation of angle α around axis â :
- $\mathrm{q}=\left(\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}\right)\right)$
that is
- $\mathrm{q}=\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{x} i+\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{y} j+\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{z} k+\cos \left(\frac{\alpha}{2}\right)$
- Observe that $\|q\|^{2}=1$

Exercise: are the following

 quaternions unitary?- $\mathbf{q}_{0}=(0,0,-1,0)=-j$
- $\mathbf{q}_{1}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=0.5 i+0.5 j+0.5 k+0.5$
- $\mathbf{q}_{2}=(1,1,1,1)=i+j+k+1$

Quaternions: exercises

- Which quaternion encodes a turnabout?
- (ita: «un dietrofront»: turning 180° around the up vector)
- Apply that quaternion to rotate a point in (x, y, z)
- Use plain quaternion algebra, and algebraic notation
- Which quaternion encodes the identity rotation?
- Is it the only one? If not, which other does?
- Verify by applying it (or them)
- Which quaternion encodes a turn of 90° to the left?
- Uses your previous two answers to find the quat. encoding turn 45° to the left, by using interpolation
- Do you need SLERP in this case? Is NLERP enough? Why?
- Verify that the solution is correct using the axis-angle formula

Example: turnabout rotation

- Find the quaternion \mathbf{r} representing the rotation by 180° (π radiants) around axis Y
- $\hat{a}=(0,1,0)$
- $\alpha=\pi, \sin \left(\frac{\alpha}{2}\right)=1, \cos \left(\frac{\alpha}{2}\right)=0$
- $\mathbf{r}=(1 \hat{a}, 0)=0 i+1 j+0 k+0=j$
imaginary vector \checkmark real scalar
- Find the quaternion \mathbf{q} representing point $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$:
- $\mathbf{q}=2 i+3 j+4 k$
- Rotate that point with that rotation:
- $\mathbf{q}^{\prime}=\mathbf{r} \mathbf{q} \overline{\mathbf{r}}=j(2 i+3 j+4 k)(-j)=\ldots$

3D Rotations as Quaternions:

equivalent representations ©

- Around axis â by angle α :

$$
\mathrm{q}=\left(\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}\right)\right)
$$

- Around axis -â by angle ($-\alpha$) (it's the same rotation!) :

$$
\mathrm{q}^{\prime}=\left(-\sin \left(\frac{-\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{-\alpha}{2}\right)\right)=\mathrm{q}
$$

Nice! But:

- Around axis â by angle $(\alpha+2 \pi)$ (again, it's the same rotation!) :

$$
\begin{aligned}
\mathrm{q}^{\prime \prime} & =\left(\sin \left(\frac{\alpha}{2}+\pi\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}+\pi\right)\right)= \\
& =\left(-\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}},-\cos \left(\frac{\alpha}{2}\right)\right)=-\mathrm{q}
\end{aligned}
$$

- Conclusion:
different quaternion :-(
quaternion q and quaternion -q encode the same rotation
60

3D Rotations as Quaternions: equivalent representations *

Given a quaternion representing a rotation:

- Flip its real part: invert rotation
- Flip its imaginary part (conjugate): invert rotation
- Flip everything: same rotation

Every rotation is encoded
by two different quaternions: q and -q .

Interpolating two quaternions (that represent two rotations)

Good results, but two caveats:
© Take the "shortest path" (as usual):
flip $2^{\text {nd }}$ quaternion first, if this makes them closer

- Distance defined as dot product in 4D (consider quaternions as 4D unit vectors for this)
(remember: dot product between unitary vectors is a measure of similarity!)
© Loss of normality
- Needs re-normalization (NLERP),
- Or SLERP
(again, just consider quaternions as 4D unit vectors)
62

Shortest path interpolation:

the case of quaternions

- Let \mathbf{p} and \mathbf{q} be two rotations
- \mathbf{q} and $-\mathbf{q}$ represent the same rotation.
- Which one to choose?
- Which one is closer to \mathbf{p} ?
- Distance between \mathbf{p} and $\mathbf{q}=\operatorname{dot}(\mathbf{p}, \mathbf{q})$
- Distance between \mathbf{p} and $-\mathbf{q}=\operatorname{dot}(\mathbf{p},-\mathbf{q})=-\operatorname{dot}(\mathbf{p}, \mathbf{q})$
- Conclusion:
- If $\operatorname{dot}(\mathbf{p}, \mathbf{q})$ is positive, interpolate with \mathbf{q}
- Otherwise, interpolate with $-\mathbf{q}$

Quaternions, exercise:

Try out rotation cumulation with quaternions

1. Take the quaternion $q 0$ that encodes the 180° rotation around the Y axis (see exercises above)
2. Take the quaternion $q 1$ that encodes the 180° rotation around the Y axis (see exercises above)
3. Compute the quaternion $q 2$ that does the two rotations in succession, in that order (using q0 and q1)
4. Which rotation is encoded by q2? Verify with an real $3 D$ object (e.g. a cellphone) that q2 encoded the status that is reached if you rotate by q0 and then q1

64

Quaternions, exercise:

Try out rotation interpolation with quaternions

1. Take (again) the quaternion q 0 that encodes the 180° rotation around the Y axis
2. Take the quaternion q1 that encodes identity rotation (or, rather, a quaternion that encodes it)
3. Compute the quaternion $q 2$ that interpolates the two quaternions q0 and q1

- (what happens with the shortest path? why do you think that is?)

4. Which rotation is encoded by q2? To help with the answer, the sin and cos for $\mathrm{PI} / 4$ radiants (45°)
