

Exercise: quaternion norm as a quaternion product

• As you may remember, given a complex number $\mathbf{c} \in \mathbb{C}$, $\mathbf{c} = a + ib$ its magnitude $||\mathbf{c}|| = \sqrt{a^2 + b^2}$ can be expressed as

$$\|\mathbf{c}\|^2 = \mathbf{c} \; \bar{\mathbf{c}}$$

Does the same hold for quaternions?
 Given q ∈ ℍ:

$$\|\mathbf{q}\|^2 = \mathbf{q}\,\overline{\mathbf{q}}$$

Verify, using the multiplication formula we learnt

72

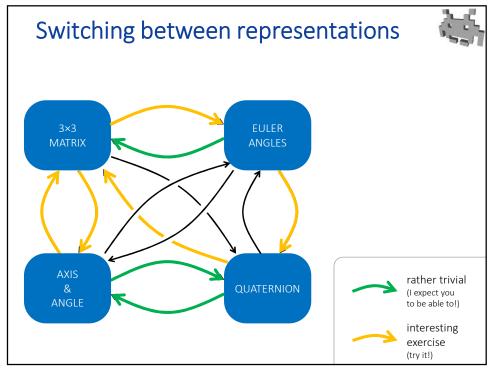
Quaternions as rotations: summary

- Compact to store (4 scalars, almost the minimum)
- Trivial to invert (just conjugate)
- Fast to composite (just multiply: 2nd * 1st)
- Fast to apply
- Easy to enforce that it stays a rotation (just renormalize)
 - Even after long sequences of cumulations, unlike matrices
- Behaves well under interpolation
 - Just use NLERP even better with SLERP
 - Remember to take the shortest path (=> flip sign if necessary)
- The favourite representation in 3D games
 - but, other solutions still useful in one context or another

Recap: representing rotations									
1/2		3x3 Matrix		Euler Angles					
Space efficient? (in RAM, GPU, storage)		****	9 scalars	****	3 scalars (even as small int!)				
Efficient/easy to	Apply (to points/vectors)	****	9 products (3 dot products)	***	requires trigonometry sin/cos				
	Invert (produce inverse)	****	just transpose	*****					
	Composite (with another rotation)	***	Matrix multipl (9 dots) Numerical errors	****					
	Interpolate (with another rotation)	****	Introduces shear/scale		asy to do, unintuitive resulton shortest-path required!				
Intuitive? (e.g. to manually set)		***		****	roll yaw pitch				
Notes		Free extra shear + scale. Useful to extract local axes.		<u> </u>	GIMBAL LOCK				

74

Recap: representing rotations										
2/2		axis , angle		(unitary) quaternion						
Space efficient? (in RAM, GPU, storage)		****	4 scalars (or 3) (precision needed)	****	4 scalars (precision needed)					
/easy to	Apply (to points/vectors)	***	Requires trigonometry	****	Just 2 quat product					
	Invert (produce inverse)	****	Just flip axis OR angle	****	super easy flip imaginary or real part					
cient	Composite (with another rotation)	****		****	super easy: 1 quat product					
Effic	Interpolate (with another rotation)	****		****	easy + good result (NLERP or SLERP)					
Intuitive? (e.g. to manually set)		★☆☆☆☆ r	10	****	no					
Notes		two representations for each rotation (flip all → no effect) (for different reasons) Require shortest path!								



What defines a rotation, for you?

- « Roll, pitch, and yaw! »
 then you are... a pilot, or an astronaut
- « X-angle, Y-angle, and Z-angle! » then you are... a digital artist (an animator, or a scener)
- « An angle! » then you are... a flatland citizen
- « A vector! the dir is the axis the magnitude the angle » then you are... a physicist
- « A 3x3 matrix! the submatrix of a 4x4 transform » then you are... a computer graphicist, or a Graphics API
- « A quaternion! »

then you are... a game developer

Notes on rotations in **≪unity** (class Quaternion)

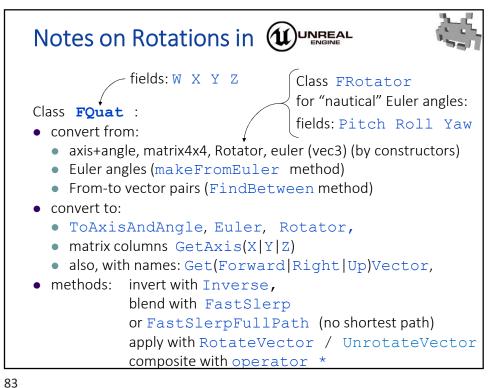
- In the GUI:
 - See / set it scale
 as Euler Angles (intuitive)

using degrees, not radians even more intuitive

- Internally:
 - A quaternion (class Quaternion)
- In the C# API:
 - programmer choice: can initialize or use them as a ... quaternion, euler angles, axis+angle, or matrix
 - thanks to C# «properties» (setter/getter methods in disguise)
 - gives the illusion to be whichever kind you think they are

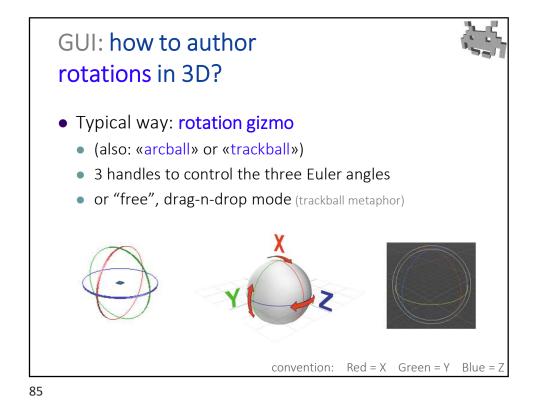
Transform

Position Rotation X O



Notes on rotations in OpenGL

- In the «old school» API: (and now in many similar libraries)
 - API: glRotate3f
 - takes: angle & axis
 - Internally:
 - matrices
 - jointly as with any other spatial transform
 - separated in MODEL+VIEW+PROJECT transforms



GUI: how to author translations in 3D?

- translation gizmo
 - handles to traslate along axes or planes

convention: Red = X Green = Y Blue = Z

GUI: how to author scalings in 3D?

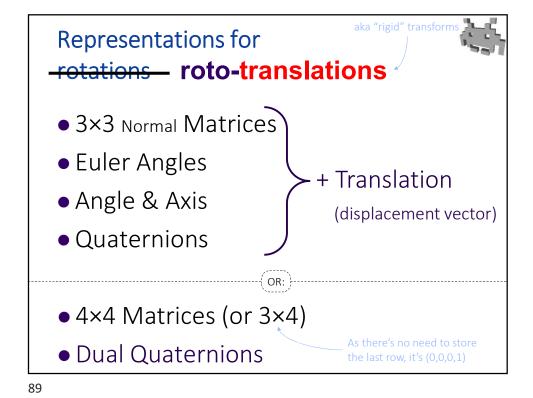
- scale gizmo
 - 3 handles for anisotropic scalings
 1 handle (middle) for uniform scalings

convention: Red = X Green = Y Blue = Z

87

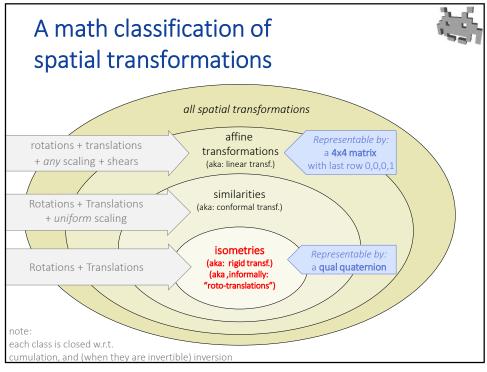
Next: representations for roto-rotations (notes)

- So far, we assumed that the rotation and translation components of a transformation are stored separatedly
 - We have seen reasons why this is convenient
- Mathematical representations exist, that store rotation + translation (aka *roto-translations*, aka *rigid* transformations) jointly:
 - 4x4 matrices (we have seen them, their pros and cons)
 - Dual quaternsions



Q: why dual-quaternions?A: better interpolation of rigid motions

- Problem with interpolating rotations and translations separately:
 - must choose "which one goes first" (R then T, or, T then R)?
 - Different choices → very different interpolation results
 - Often, neither is what you had in mind
- Dual quaternions = a better* math abstraction to model roto-translations
 - * better interpolation of roto-translations



The math of Dual Quaternions in a nutshell 1/3

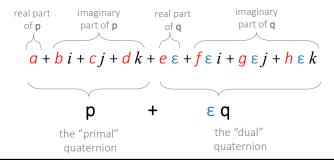
- Dual quaternions are a mathematical way to represent a roto-translation (aka, a rigid motion)
- They result in very good interpolation between 2 (or more) roto-translations
- They are sometimes used in animation techniques
 - See lecture about skeletal animations later

The math of Dual Quaternions in a nutshell 2/3

- New "fantasy" assumption: there is a ε such that $\varepsilon \neq 0$, $\varepsilon^2 = 0$
- A dual quaternion: $p + \varepsilon q$, with $p,q \in \mathbb{H}$
- So, eight scalars (a,b,c,d,e,f,g,h)

quaternion set

• weights for: $1, i, j, k, \epsilon, \epsilon i, \epsilon j, \epsilon k$



93

The math of Dual Quaternions in a nutshell 3/3

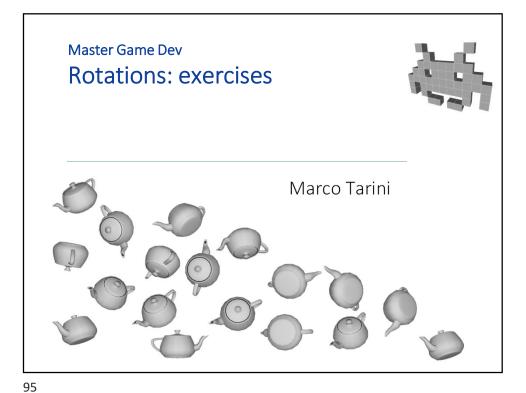
$$a+bi+cj+dk$$
 $e+fi+gj+hk$

- A dual quaternion $\dot{\mathbf{p}} + \varepsilon \mathbf{q}$ can represent:
 - a point / vector in 3D , when $\mathbf{p}=1$ and Real(\mathbf{q}) = $\mathbf{e}=0$ then Im(\mathbf{q}) = $(\mathbf{f},\mathbf{g},\mathbf{h})=(x,y,z)$
 - a roto-translation, when $||\mathbf{p}|| = 1$ and $\mathbf{p} \cdot \mathbf{q} = 0$ then \mathbf{p} encodes the rotational part and \mathbf{q} encodes the translational part
 - (nothing, otherwise)

dual-quaternion conjugate: \overline{p} - ϵ \overline{q}

• To roto-translate a point **a** with roto-trans **b**just "conjugate" their representations $\mathbf{a'} \leftarrow \mathbf{b} * \mathbf{a} * \mathbf{b}$

dual quaternion multiplication



2D rotations as 3D rotations

- A 2D rotation (of an angle α , around the origin) can be seen as the *restriction* of a 3D rotation in the X-Y plane (of an angle α , around the... Z axis!)
- Find this 3D rotation in *all* representations:
 - as... a 3x3 Matrix:
 - as... Axis-times-Angle:
 - as... Euler angles (Roll=Z, Pitch=X, Yaw=Y):
 - as... a quaternion:

Exercise:

2D rotations as 3D rotations

- A 2D rotation (of an angle α , around the origin) can be seen as the *restriction* of a 3D rotation in the X-Y plane (of an angle α , around the... Z axis!)
- Find this 3D rotation in *all* representations:

as... a 3x3 Matrix:

$$\begin{bmatrix} +\cos(\alpha) & -\sin(\alpha) & 0 \\ +\sin(\alpha) & +\cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

as... Axis-times-Angle:

$$[0,0,\alpha]$$

• as... Euler angles (Roll=Z, Pitch=X, Yaw=Y): $[\alpha, 0, 0]$

as... a quaternion:

$$\left[0,0,\sin\left(\frac{\alpha}{2}\right),\cos\left(\frac{\alpha}{2}\right)\right]$$

97

Exercises: find the rotation that...

- For all the following exercises:
 we can pick any rotation representation!
 (unless otherwise specified)
 - As long as we have algorithms to translate one representation into another
 - Try to understand which one is the most convenient format, for a given task?

Exercise:

find the «from-to» rotation

- Problem: given a pair of versors $\hat{\mathbf{v}}$ and $\hat{\mathbf{w}}$, $(\hat{\mathbf{v}} = from \text{ and } \hat{\mathbf{w}} = to)$ find the minimal rotation that brings $\hat{\mathbf{v}}$ into $\hat{\mathbf{w}}$
 - useful problem in several contexts

e.g. Al aiming a bazooka

- A solution: as axis-and-angle
 - the axis α is found as $\hat{\mathbf{v}} \times \hat{\mathbf{w}}$ (renormalizing it)
 - of the angle α , we know that the cosine is ($\hat{\mathbf{v}} \cdot \hat{\mathbf{w}}$) and the sine is || $\hat{\mathbf{v}} \times \hat{\mathbf{w}}$ || . so α = atan2(|| $\hat{\mathbf{v}} \times \hat{\mathbf{w}}$ ||, $\hat{\mathbf{v}} \cdot \hat{\mathbf{w}}$)

99

Exercise: find the «look-at» rotation

- Given observer's position e and observed point t
 find the rotation (i.e., the orientation)
 for a character who must be looking in that direction
- ullet That specification is incomplete: we also need another input: a «target up-vector» $\hat{\pmb{u}}$
 - the character wants to keep its up-direction as similar as possible to $\widehat{\pmb{u}}$, while looking toward \pmb{t}
 - Usually, the (world) up-vector, e.g. (in Unity) (0,1,0)
- Useful for... characters heads looking at something / facing toward something, setting up the camera...

Exercise: find the «look-at» rotation

- Solution: as a 3x3 matrix
 - find the \hat{x} , \hat{y} , \hat{z} directions of this local character
 - they must be 3 reciprocally orthogonal versors
 - they are the columns of the sought matrix
- that is (assuming Unity conventional axis names):
 - $\hat{z} = (t e)/||t e||$
 - $\hat{y} = \hat{u}$? Wrong: it wouldn't be necessarily orthogonal with \hat{z}
 - but, $\hat{x} = \hat{u} \times \hat{z} / || \hat{u} \times \hat{z} ||$ (note the re-normalization) because the right direction is orthogonal to both \hat{z} and \hat{u}
 - finally, $\hat{y} = \hat{z} \times \hat{x}$

102

What about the "look-at" complete transform

- Setting up the complete transform of a camera (from the same data):
 - Camera position: is the translation component
 - the "look-at" rotation: is the rotation component
 - (scale component = 1)

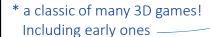
In Computer Vision the set of these parameters are defined as the camera extrinsic parameters

"Camera-man in videogame logic" unknown artist, circa 2010

Exercise:

update the orientation of a rolling ball *

- A ball with radius r stands on a flat plane (with plane normal $\hat{\mathbf{n}}$), currently oriented with rotation $\mathbf{R_0}$ and positioned (center position) in $\mathbf{p_0}$
- It then rolls in position p₁ (staying on the plane)
- Find its new orientation R₁



Marble Madness, Atari, 1986

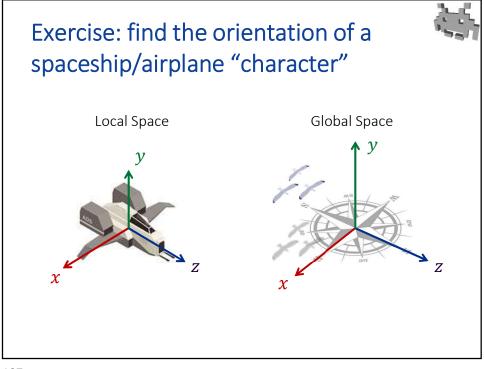
105

Exercise:

update the orientation of a rolling ball'

Solution (trace): as axis-angle...

- The axis must be:
 - parallel to the ground;
 therefore, orthogonal to n̂!
 - orthogonal to the direction of motion (p₁ - p₀)
 - (also, it must be expressed as a unit vector)
- The angle α must satisfy... full-circumference : length-of-arch = full-circle : α $2\pi r$ $|\mathbf{p}_1 - \mathbf{p}_0||$ 2π radiants, or 360°



Exercise: find the orientation of a spaceship/airplane "character"

- ullet Find the orientation R_P of an airplane at spawn time
 - The airplane is going NNE, and climbing up at 30° angle.
 - Its wings are parallel to the ground.

NNE = halfway between North and NE

- Local space of airplane:
 - X-axis: left-right (the direction of the wings)
 - Y-axis: below to above
 - Z-axis: engine-to-propeller
- World space:
 - X-axis: west to east
 - Y-axis: ground to sky
 - Z-axis: south to north

(which handedness is world and local spaces?)

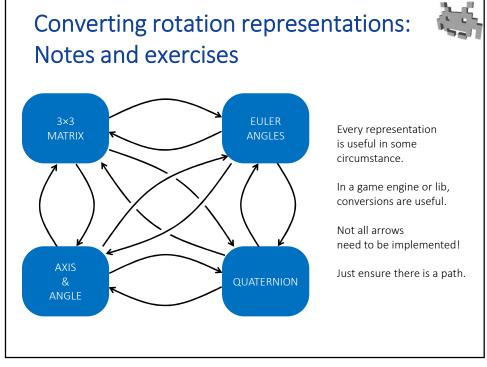
Exercise: find the orientation of the head of the pilot of previous exercise

- The head of the pilot inside that plane is tilted 20° to the left, and 10° degrees above
- What it is its orientation R_H?
- Local space of the head:
 - X-axis: left-eye to right-eye
 - Y-axis: chin to top of the head
 - Z-axis: view direction

109

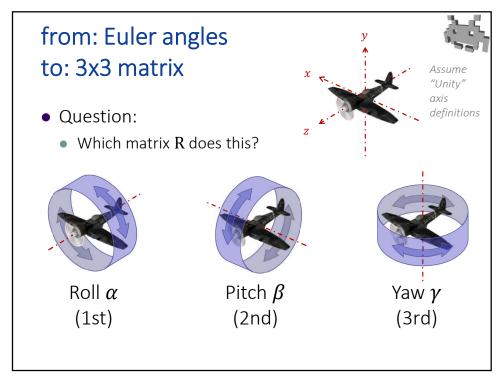
Exercise: find the angle of a turning head

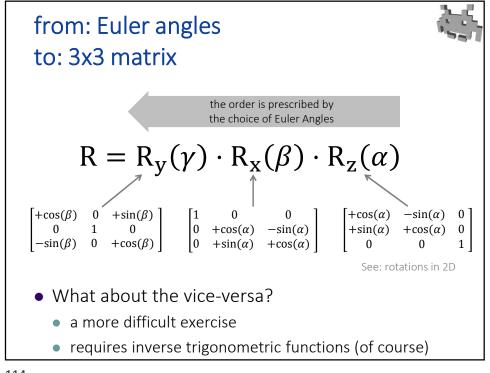
- ullet The pilot inside a plane is looking in direction $\hat{oldsymbol{v}},$
 - no tilt of the head: that is, the eye-to-eye vector is parallel to the ground
 - Axes: same as previous exercise
- What it is the orientation R_H of the head?
- \bullet Given that the plane is oriented as R_P , what is the angle his neck is turning, with respect to the body?
 - Always assume you can turn any rotation representation into another



From: axis-&-angle
To: quaternion, or viceversa

- Trivial exercise. Observation:
 - When going from an angle-based representation (Euler angles, Axis-&-Angle)
 to a non-angle-based representation (Matrix, Quaternion)
 you'll need trigonometric functions (sin, cos, ...)





from: axis-&-angle to: 3x3 matrix (exercise)

- Question:
 - Which matrix R rotates by α degrees around axis \hat{a} ?
- Trace:
 - 1. Find a rotation matrix R_A mapping \hat{a} the axis into the X axis (hint: find three orthogonal versors to use as columns of R_A , one of them being \hat{a})
 - 2. Define a rotation matrix $\mathbf{R}_{\mathbf{x}}$ rotating by α around X axis
 - 3. Then: $\mathbf{R} = \mathbf{R}_A^{-1} \cdot \mathbf{R}_{\mathcal{X}} \cdot \mathbf{R}_A$ (understand why)

115

from: 3x3 matrix to axis-&-angle (exercise)

- Question:
 - Given a rotation matrix R , find axis \hat{a} and rotation angle α
 - Assumption: R is actually a rotation matrix
- Trace:
 - Obeservation: for the given matrix R, R $\hat{a} = \hat{a}$ (why?)
 - In other words,â is an eigenvector of R of eigenvalue 1
 - 3. Find α : remember at an 2 exists