Course Plan
lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

66

70

Exercise: quaternion norm as a quaternion product

- As you may remember, given a complex number $\mathbf{c} \in \mathbb{C}, \quad \mathbf{c}=a+i b$ its magnitude $\|\mathbf{c}\|=\sqrt{a^{2}+b^{2}}$ can be expressed as

$$
\|\mathbf{c}\|^{2}=\mathbf{c} \overline{\mathbf{c}}
$$

- Does the same hold for quaternions?

Given $\mathbf{q} \in \mathbb{H}$:

$$
\|\mathbf{q}\|^{2}=\mathbf{q} \overline{\mathbf{q}}
$$

- Verify, using the multiplication formula we learnt

72

Quaternions as rotations: summary

- Compact to store (4 scalars, almost the minimum)
- Trivial to invert (just conjugate)
- Fast to composite (just multiply: $2^{\text {nd }} * 1^{\text {st }}$)
- Fast to apply
- Easy to enforce that it stays a rotation (just renormalize)
- Even after long sequences of cumulations, unlike matrices
- Behaves well under interpolation
- Just use NLERP - even better with SLERP
- Remember to take the shortest path (=> flip sign if necessary)
- The favourite representation in 3D games
- but, other solutions still useful in one context or another

Recap：representing rotations				
1／2	3×3 Matrix		Euler Angles	
Space efficient？ （in RAM，GPU，storage．．．）		9 scalars	$\star \star \star \star \star$	3 scalars （even as small int！）
－Apply （to points／vectors）	$\star \star \star \star$ 行	9 products （3 dot products）	$\star \star \text { 文公会 }$	requires trigonometry sin／cos
$\stackrel{\infty}{\infty}$ Invert ©（produce inverse）	$\star \star \star \star \star$	just transpose	＊六交交交	
$\begin{aligned} & \stackrel{\rightharpoonup}{c} \text { Composite } \\ & \underset{\sim}{\circlearrowleft} \text { (with another rotation) } \end{aligned}$		Matrix multipl （9 dots） Numerical errors	大去交交令	
\ddagger Interpolate ш（with another rotation）	＊			asy to do，unintuitive result \triangle shortest－path required！
Intuitive？ （e．g．to manually set）			$\star \star \star \star \star$	roll yaw pitch
Notes．．．	Free ex Useful to	a shear＋scale． extract local axes．	！	GIMBAL LOCK

78

What defines a rotation, for you?

«Roll, pitch, and yaw! » then you are... a pilot, or an astronaut
«X-angle, Y-angle, and Z-angle! » then you are... a digital artist (an animator, or a scener)
«An angle! » then you are... a flatland citizen
"A vector! the dir is the axis the magnitude the angle " then you are... a physicist
«A 3x3 matrix! the submatrix of a 4×4 transform " then you are... a computer graphicist, or a Graphics API
«A quaternion! » then you are... a game developer

80

Notes on rotations in \langle Junity

(class Quaternion)

- In the GUI :
- See / set it

Transform					[7]		
Position	X	0	Y	0	Z	0	
Rotation	X	0	Y	180	Z	0	
Scale	X	1	Y	1	Z	1	

- Internally:
- A quaternion (class Quaternion)
- In the C\# API:
- programmer choice: can initialize or use them as a ... quaternion, euler angles, axis+angle, or matrix
- thanks to C\# «properties»
(setter/getter methods in disguise)
- gives the illusion to be whichever kind you think they are

Notes on Rotations in (1u) ungeal

- axis+angle, matrix4x4, Rotator, euler (vec3) (by constructors)
- Euler angles (makeFromEuler method)
- From-to vector pairs (FindBetween method)
- convert to:
- ToAxisAndAngle, Euler, Rotator,
- matrix columns GetAxis(X|Y|Z)
- also, with names: Get(Forward|Right|Up)Vector,
- methods: invert with Inverse, blend with FastSlerp or FastSlerpFullPath (no shortest path) apply with RotateVector / UnrotateVector composite with operator *
83

Notes on rotations in OpenGL

- In the «old school» API:
(and now in many similar libraries)
- API: gIRotate3f
- takes: angle \& axis
- Internally:
- matrices
- jointly as with any other spatial transform
- separated in MODEL+VIEW+PROJECT transforms

GUI: how to author rotations in 3D?

- Typical way: rotation gizmo
- (also: «arcball» or «trackball»)
- 3 handles to control the three Euler angles
- or "free", drag-n-drop mode (trackball metaphor)

convention: $\operatorname{Red}=X \quad$ Green $=Y \quad$ Blue $=Z$
85

GUI: how to author

translations in 3D?

- translation gizmo
- handles to traslate along axes or planes

87

Next: representations for roto-rotations (notes)

- So far, we assumed that the rotation and translation components of a transformation
are stored separatedly
- We have seen reasons why this is convenient
- Mathematical representations exist, that store rotation + translation (aka roto-translations, aka rigid transformations) jointly:
- 4×4 matrices (we have seen them, their pros and cons)
- Dual quaternsions

Representations for

- 3×3 Normal Matrices
- Euler Angles
- Angle \& Axis
- Quaternions
(displacement vector)

OR:

- 4×4 Matrices (or 3×4)
- Dual Quaternions

Q: why dual-quaternions?

A: better interpolation of rigid motions

- Problem with interpolating rotations and translations separately:
- must choose "which one goes first" (R then T, or, T then R)?
- Different choices \rightarrow very different interpolation results
- Often, neither is what you had in mind
- Dual quaternions = a better* math abstraction to model roto-translations
- * better interpolation of roto-translations

- Dual quaternions are a mathematical way to represent a roto-translation (aka, a rigid motion)
- They result in very good interpolation between 2 (or more) roto-translations
- They are sometimes used in animation techniques
- See lecture about skeletal animations later

93

The math of Dual Quaternions in a nutshell 3/3

```
a+bi+cj+dk e+fi+gj+hk
```

- A dual quaternion $p+\varepsilon q$ can represent:
- a point / vector in 3D, when $\mathbf{p}=1$ and $\operatorname{Real}(\mathbf{q})=e=0$ then $\operatorname{Im}(q)=(f, g, h)=(x, y, z)$
- a roto-translation, when $\|p\|=1$ and $p \cdot q=0$ then p encodes the rotational part and q encodes the translational part
- (nothing, otherwise)
- To roto-translate a point a with roto-trans b just "conjugate" their representations a " $\leftarrow \mathrm{b} * \mathrm{a} * \overline{\mathrm{~b}}$

95

Exercise:

2D rotations as 3D rotations

- A 2D rotation (of an angle α, around the origin) can be seen as the restriction of a 3D rotation in the $X-Y$ plane (of an angle α, around the... Z axis!)
- Find this 3D rotation in all representations:
- as... a 3×3 Matrix:
- as... Axis-times-Angle:
- as... Euler angles (Roll=Z, Pitch=X, Yaw=Y):
- as... a quaternion:

Exercise:

2D rotations as 3D rotations

- A 2 D rotation (of an angle α, around the origin) can be seen as the restriction of a 3D rotation in the $X-Y$ plane (of an angle α, around the... Z axis!)
- Find this 3D rotation in all representations:
- as... a 3×3 Matrix:

$$
\left[\begin{array}{ccc}
+\cos (\alpha) & -\sin (\alpha) & 0 \\
+\sin (\alpha) & +\cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- as... Axis-times-Angle:
- as... Euler angles (Roll=Z, Pitch=X, Yaw=Y):
$[\alpha, 0,0]$
- as... a quaternion:

$$
\left[0,0, \sin \left(\frac{\alpha}{2}\right), \cos \left(\frac{\alpha}{2}\right)\right]
$$

97

Exercises:

find the rotation that...

- For all the following exercises:
we can pick any rotation representation!
(unless otherwise specified)
- As long as we have algorithms to translate one representation into another
- Try to understand which one is the most convenient format, for a given task?

Exercise:

find the «from-to» rotation

- Problem: given a pair of versors \hat{v} and \widehat{w}, ($\widehat{v}=$ from and $\widehat{w}=t o$)
find the minimal rotation that brings \hat{v} into \widehat{w}+
- useful problem in several contexts \qquad e.g. Al aiming a bazooka
- A solution: as axis-and-angle
- the axis a is found as $\hat{v} \times \widehat{w}$ (renormalizing it)
- of the angle α, we know that the cosine is $(\hat{v} \cdot \widehat{w})$ and the sine is $\|\hat{v} \times \widehat{w}\|$. so $\alpha=\operatorname{atan} 2(\|\hat{v} \times \widehat{w}\|, \widehat{v} \cdot \widehat{w})$

99

Exercise:

find the «look-at» rotation

- Given observer's position \mathbf{e} and observed point \mathbf{t} find the rotation (i.e., the orientation)
for a character who must be looking in that direction
- That specification is incomplete:
we also need another input: a «target up-vector» $\widehat{\boldsymbol{u}}$
- the character wants to keep its up-direction as similar as possible to $\widehat{\boldsymbol{u}}$, while looking toward \mathbf{t}
- Usually, the (world) up-vector, e.g. (in Unity) $(0,1,0)$
- Useful for... characters heads looking at something / facing toward something, setting up the camera...

Exercise:

find the «look-at» rotation

- Solution: as a 3×3 matrix
- find the $\widehat{x}, \widehat{y}, \hat{z}$ directions of this local character
- they must be 3 reciprocally orthogonal versors
- they are the columns of the sought matrix
- that is (assuming Unity conventional axis names):
- $\hat{\mathbf{z}}=(\mathbf{t}-\mathbf{e}) /\|\mathbf{t}-\mathbf{e}\|$
- $\widehat{\boldsymbol{y}}=\widehat{\boldsymbol{u}}$? Wrong: it wouldn't be necessarily orthogonal with \widehat{z}
- but, $\widehat{\boldsymbol{x}}=\widehat{\boldsymbol{u}} \times \widehat{\mathbf{z}} /\|\widehat{\boldsymbol{u}} \times \widehat{\mathbf{z}}\|$ (note the re-normalization) because the right direction is orthogonal to both \widehat{z} and $\widehat{\boldsymbol{u}}$
- finally, $\widehat{y}=\widehat{z} \times \widehat{x}$

105

Exercise:

update the orientation of a rolling ball *

Solution (trace): as axis-angle...

- The axis must be:
- parallel to the ground; therefore, orthogonal to \hat{n} !
- orthogonal to the
 direction of motion ($\mathbf{p}_{1}-\mathbf{p}_{0}$)
- (also, it must be expressed as a unit vector)
- The angle α must satisfy...
full-circumference : length-of-arch = full-circle : α

107

Exercise: find the orientation of a spaceship/airplane "character"

- Find the orientation R_{P} of an airplane at spawn time
- The airplane is going NNE, and climbing up at 30° angle.
- Its wings are parallel to the ground.
- Local space of airplane:
- X-axis: left-right (the direction of the wings)
- Y-axis: below to above
- Z-axis: engine-to-propeller
- World space:
- X-axis: west to east
- Y-axis: ground to sky
- Z-axis: south to north

Exercise: find the orientation of the head of the pilot of previous exercise

- The head of the pilot inside that plane is tilted 20° to the left, and 10° degrees above
- What it is its orientation R_{H} ?
- Local space of the head:
- X-axis: left-eye to right-eye
- Y-axis: chin to top of the head
- Z-axis: view direction

Exercise:

find the angle of a turning head

- The pilot inside a plane is looking in direction \hat{v},
- no tilt of the head:
that is, the eye-to-eye vector is parallel to the ground
- Axes : same as previous exercise
- What it is the orientation R_{H} of the head?
- Given that the plane is oriented as R_{P}, what is the angle his neck is turning, with respect to the body?
- Always assume you can turn
any rotation representation into another

111

From: axis-\&-angle

To: quaternion, or viceversa

- Trivial exercise. Observation:
- When going from an angle-based representation (Euler angles, Axis-\&-Angle) to a non-angle-based representation (Matrix, Quaternion) you'll need trigonometric functions (\sin , \cos , \ldots)
- When going from a non-angle-based representation (Euler angles, Axis-\&-Angle)
to an angle-based representation (Matrix, quaternion) you'll need inverse trigonometric functions (asin , acos , atan $2 \Varangle$ Remember this convenient one exists!

113

from: Euler angles
 to: 3×3 matrix

See: rotations in 2D

- What about the vice-versa?
- a more difficult exercise
- requires inverse trigonometric functions (of course)

from: axis-\&-angle
 to: 3×3 matrix (exercise)

- Question:
- Which matrix R rotates by α degrees around axis â ?
- Trace:

1. Find a rotation
matrix R_{A} mapping â the axis into the X axis
(hint: find three orthogonal versors to use as columns of R_{A}, one of them being â)
2. Define
a rotation matrix R_{x} rotating by α around X axis
3. Then: $\mathrm{R}=\mathrm{R}_{A}^{-1} \cdot \mathrm{R}_{x} \cdot \mathrm{R}_{A}$ (understand why)

115

from: 3×3 matrix

to axis-\&-angle (exercise)

- Question:
- Given a rotation matrix R, find axis â and rotation angle α
- Assumption: R is actually a rotation matrix
- Trace:

1. Obeservation: for the given matrix R , Râ $=\hat{a} \quad$ (why?)
2. In other words, \hat{a} is an eigenvector of R of eigenvalue 1
3. Find α : remember atan 2 exists
