03: 3D Rotations. EXTRA

116

Dual Quaternions: what we said so far 1/2

- New "fantasy" assumption: there is a ε such that $\varepsilon \neq 0, \varepsilon^{2}=0$
- A dual quaternion: $p+\varepsilon q$, with $p, q \in \mathbb{H}$
- So, eight scalars (a, b, c, d, e, f, g, h)
- weights for: $1, i, j, k, \varepsilon, \varepsilon i, \varepsilon j, \varepsilon k$

117

03: 3D Rotations. EXTRA

Dual Quaternions: what we said so far 2/2

$$
a+b i+c j+d k \quad e+f i+g j+h k
$$

- A dual quaternion $p+\varepsilon q$ can represent:
- a point / vector in 3D, when $p=1$ and $\operatorname{Real}(\mathbf{q})=e=0$ then $\operatorname{Im}(q)=(f, g, h)=(x, y, z)$
- a roto-translation, when $\|p\|=1$ and $p \cdot q=0$ then p encodes the rotational part and q encodes the translational part
- (nothing, otherwise)
dual-quaternion conjugate: $\bar{p}-\varepsilon \bar{q}$
- To roto-translate a point a with roto-trans b just "conjugate" their representations a " $\leftarrow \mathrm{b} * \mathrm{a} * \mathrm{~b}$

Quaternion math: Dot Product
(let's see a few rules that will be useful later)

- It's computed considering the quaternions as vectors in 4D
- Let's denote it as $\langle\mathbf{p}, \mathbf{q}\rangle$
to avoid confusion with the standard quaternion product $\mathbf{p} \mathbf{q}$
- The dot can also be rewritten as the real part of the product of \mathbf{p} with the conjugate of \mathbf{q}, or vice-versa, any order:

$$
\langle\mathbf{p}, \mathbf{q}\rangle=\operatorname{Re}(\mathbf{p} \overline{\mathbf{q}})=\operatorname{Re}(\overline{\mathbf{q}} \mathbf{p})
$$

- Dot product of a quaternion with itself:

$$
\langle\mathbf{p}, \mathbf{p}\rangle=\mathbf{p} \overline{\mathbf{p}}=\|\mathbf{p}\|^{2}
$$

- Also: $(\mathbf{p}+\overline{\mathbf{p}})=2 \operatorname{Re}(\mathbf{p})$

Exercise:
$(\mathbf{p}-\overline{\mathbf{p}})=2 \operatorname{Im}(\mathbf{p}) \quad$ understand why

- Also: $\overline{(\mathbf{p q})}=\overline{\mathbf{q}} \overline{\mathbf{p}} \quad \begin{aligned} & \text { Exercise: } \\ & \text { verify! }\end{aligned}$

$$
\begin{aligned}
&\left(\mathbf{p}_{0}+\varepsilon \mathbf{q}_{0}\right) *\left(\mathbf{p}_{1}+\varepsilon \mathbf{q}_{1}\right) \\
&= \\
& \mathbf{p}_{0} \mathbf{p}_{1}+\varepsilon\left(\mathbf{p}_{0} \mathbf{q}_{1}+\mathbf{q}_{0} \mathbf{p}_{1}\right)+\varepsilon^{2} \underset{\mathbf{q}_{0}}{\mathbf{q}_{1}}
\end{aligned}
$$

Dual Quaternions of pure rotations \& translations

- Pure translation dual quaternion by vector $\overrightarrow{\mathrm{t}}$:

Exercise: check that, in both cases..

- the primal has norm 1
- the primal dot the dual is 0

Proof 2/2	$\begin{aligned} & \overbrace{(\mathbf{r}+\varepsilon 0)}^{\begin{array}{c} \text { dual-quat } \\ \text { representing } \\ \text { apure } \\ \text { rotation } \end{array}} * \overbrace{(1+\varepsilon(\overrightarrow{\mathrm{V}}, 0))}^{\begin{array}{c} \text { dual-quat } \\ \text { representing } \\ \text { 3D point } \overrightarrow{\mathrm{v}} \end{array}} * \overbrace{(\overline{\mathbf{r}}+\varepsilon 0)}^{\text {conjugate of }}= \\ & =(\mathbf{r}+\varepsilon 0) * \overbrace{(\overline{\mathbf{r}}+\varepsilon(\overrightarrow{\mathrm{V}}, 0) \overline{\mathbf{r}})}^{\text {col }}= \\ & =\mathbf{r} \overline{\mathbf{r}}+\underbrace{}_{\underbrace{\varepsilon(\mathbf{r}(\overrightarrow{\mathrm{V}}, 0) \overline{\mathbf{r}})}_{\begin{array}{l} \text { representing the } \\ \text { rotation } \overrightarrow{\mathrm{v}}^{\prime} \text { of } \overrightarrow{\mathrm{v}} \end{array}}}= \end{aligned}$

126

128

Dual quaternions as rototranslation (summary of other operations)

- Each roto-translation is expressed by exactly two (opposite!) dual quaternions
- Their primal is unitary, their dual is orthogonal to primal
- Dual quaternion 1 (that is, $1+\varepsilon 0$) is the identity (as so is -1)
- Cumulation: multiplication (second $*$ first)
- Inversion: conjugation of both primal and dual (not the same as: dual-quat conjugation)

131

Dual Quaternion for a "translo-rotati (compare with roto-translation!) $\begin{gathered} (\mathbf{r}+\varepsilon 0) *(1+\varepsilon \mathbf{t}) \\ = \\ \mathbf{r}+\varepsilon \mathbf{r} \mathbf{t} \end{gathered}$			$-D$
with... $\quad \mathbf{t}=$ and so... $\mathbf{t} * \mathbf{r}=\frac{1}{2}$	$\frac{1}{2} \overrightarrow{\mathrm{t}}$	0	$\begin{aligned} & s=\sin \left(\frac{\alpha}{2}\right) \\ & c=\cos \left(\frac{\alpha}{2}\right) \end{aligned}$
	$\frac{s \hat{\mathbf{a}}}{\hat{\mathrm{a}} \times \overrightarrow{\mathrm{t}}+c \overrightarrow{\mathrm{t}}}$	$-S \hat{a} \cdot \overrightarrow{\mathrm{t}}$	

132

Interpolating Dual Quaternions

$$
\operatorname{mix}\left(\mathbf{p}_{0}+\varepsilon \mathbf{q}_{0}, \mathbf{p}_{1}+\varepsilon \mathbf{q}_{1}, t\right)
$$

1. Take shortest path:
if $\left\langle\mathbf{p}_{0}, \mathbf{p}_{1}\right\rangle$ negative, then flip both \mathbf{p}_{1} and \mathbf{q}_{1}
2. Interpolate both primal \& dual (LERP):

$$
\begin{aligned}
& \mathbf{p}=\operatorname{mix}\left(\begin{array}{l}
\mathbf{p}_{0}, \\
\left.\mathbf{p _ { 1 }}, t\right) \\
\mathbf{q}=\operatorname{mix}(\\
\mathbf{q}_{0}, \\
\left.\mathbf{q}_{1}, t\right)
\end{array}\right.
\end{aligned}
$$

3. Re-enforce \mathbf{p} to be unitary:
divide both \mathbf{p} and \mathbf{q} by $\|\mathbf{p}\|$
4. Re-enforce \mathbf{q} to be orthogonal to \mathbf{p} :
subtract $\langle\mathbf{p}, \mathbf{q}\rangle \mathbf{p}$ from \mathbf{q} (why?)
