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3D video games

3D Game Physics
Marco Tarini

computer
animation

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 
lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 
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Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on 
artist’s skill

 Does not adapt to 
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven 
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a note on terminology: 
in some contexts, procedural means 
“produced by a simple procedure” 
as opposed to “physically simulated”

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 but not necessarily accuracy

 robustness
 should almost never “explode”
 it’s tolerable to have inconsistency in a few frames, 

as long as it recovers in subsequent ones
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Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

7

8



3D Video Games                                
05: Game Physics - Dynamics 1

2024-04-04

Marco Tarini                                  
Università degli studi di Milano     4

Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D

Physics engine:
intro

 Game engine module
 executed in real time at game run-time

 A high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 potentially, highly parallel

==> good fit for hardware support 
( just like the Rendering Engine)
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Hardware for 
Physics engine

 For a brief moment ~2006: PPU
 “Physics Processing Unit”
 HW unit specialized for physics

 After that: GP-GPU 
 “General Purpose Graphics Processing Unit”

= Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 or, Cuda (nVidia), OpenCL (openSource)

To exploit a strong parallelism, 
you need a strongly parallel hardware!

Main Software (libraries, SDK)

open source, free,
HW accelerated (OpenCL) + CPU

open source, free

mostly CPU 
(Microsoft)

CPU+GPU
(CUDA) NVidia

2D, open source, free
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Brief history

Lots of AAA
3D Games

by

VPhysics

etc
(in Maya
as a plugin,…) Lots more of AAA

3D Games

Brief history

…
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The 2 tasks of the Physics engine

1. Dynamics (Newtonian)
for objects such as:
 Particles
 Rigid bodies
 Articulated bodies

 E.g. “ragdolling”

 Soft bodies
 Ropes (specific solutions)
 Cloth (specific solutions)
 Hair (specific solutions)
 Free-form deformation 

bodies (general)

 Fluids
 Expensive!

2. Collision handling
 Collision detection
 Collision response

Fields 
of study

Dynamics
The motion, 
as a result of forces

Example:
“Subject to gravity, 
how will this 
pendulum swing?”

Statics
Equilibrium states, 
minimal energy states

Example:
“In which state(s) can 
this pendulum be still?”

Kinematics
The motion itself, no 
matter why it moves

Example:
“If the angular speed of the 
pendulum is currently X, 
how fast is the ball 
moving?” (or vice versa)
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Newtonian 
Dynamics

Physics and spaces 
(observation)

 The scene hierarchy,
or the entire distinction between local and global space,
its’s entirely “in our mind”
 It’s a useful abstraction to control or code scripted animations 
 E.g., kinematics animations, skeletal animations…

 But physics doesn’t care about any of it
 Physics happens entirely in global (world) space
 Persistent spatial relationships (e.g., between a car and its wheels)

either exists due to physical constraints, or they are irrelevant 
 Even if they physically exists, they are still enforced in global space,

like all the rest of the physics simulation
 Physics simulation computes changes to objects states 

(position, orientation…) in global space
 But, as we know, these updates can be converted/stored in local space
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Spatial placement of a (rigid) object

2D Physics

 Position: 
(x,y)

 Orientation: 
(α) – angle (scalar)

3D Physics

 Position: 
(x,y,z)

 Orientation: 
quaternion or

axis,angle or

axis * angle  or

3x3 matrix or

Euler angles

Newtonian dynamics: summary

 “with mass”What changes the
rate of change

(d2 / dt2)

 “with mass”

(momentum)

Rate of change
of 

(d / dt )

Current
object
placement

Force 𝑓

𝑓 = 𝑚 𝑎⃗

Acceleration

𝑎⃗ = 𝑣̇ = 𝑝̈

Momentum

𝑚 𝑣

Velocity  𝑣

𝑣 = 𝑝̇

( 𝑣 = “speed”  )

Position  𝑝

𝑝 = (x,y,z)

Torque τ

τ = 𝐼 𝑎⃗ ȉ

(“mechanic 
momentum”)

Angular acc. αAngular momentum

𝐼 𝜔

𝐼 = moment of inertia

Angular velocity  𝜔Orientation

(e.g. quaternion)

change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)
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Per-object constant: mass 
& its distribution (for non point-shaped ones)

A few quantities associated to each rigid object
 constants: they don’t (normally) change
 input of the physics dynamic simulation, not output

 Mass:
 resistance to change of velocity 

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of massdi

st
rib

ut
io

n 
of

 m
as

s

Mass: notes

 resistance to change of velocity 
 also called inertial mass

 also, incidentally: 
ability to attract every other object
 also called gravitational mass
 happens to be the same

 it’s what you measure with a scale
 Unity of measure:

kg, g, etc…
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Barycenter: notes

 Aka the center of mass
 it’s a fixed position (for a rigid body) 

 It’s simply the weighted average of the positions
of the subparts composing an object
 literally “weighted”: with their masses

 Does not necessarily coincide with  the origin of the local frame 
of that object
 but it can
 otherwhise, it’s a fixed point (in local frame)

 In a physical simulation, the position of a rigid body
is better described as the position of its barycenter

 In absence of forces, the object rotates (orbits, spin) 
around this position.

Moment of inertia: notes 1/3

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low
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Moment of inertia: notes 2/3

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the total mass, and also on its distribution
 the farthest one sub-mass from the axis, the > the resistance

 In 2D: it’s a fixed value 
(for a given rigid object)
 The object always spins around its barycenter

Moment of inertia: notes 3/3

 In 3D: the rigid objects spins around an axis passing 
through the barycenter
 for any possible axis of rotation, 

you have a different scalar moment of inertia
 for a given axis 𝑎ො the scalar moment is given by

𝑎̂୘ M 𝑎ො

where 3×3 matrix M is the  «(moment of) inertia matrix»
aka the «(moment of) inertia tensor»)

 M can be computed for a given rigid object
 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or, sum the contributions for each sub-mass

 M describes the scalar moment of inertia for any possible 
axis or rotation
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State of a rigid object 
in a physical simulation

current

current rates of change

constants

updated
by
physics 
(dynamics)

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

setup at initialization,
rarely changes
(e.g. by scripts)

Note: acceleration/forces/torques are 
not part of the state

frictions; 
see later

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

Adding a “RigidBody” component 
to a Game Object is to say:
“please let the Physics engine take 
care of the dynamics of this object”

bool isKinematic
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In                     (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Vector3 angular_velocity

float mass

Vector3 centerOfMass

float drag 

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D 
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter (in local space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame!)

bool isKinematic
if true: disable dynamics 
(but keeps e.g. collisions)

The case of particles

 For now, we will study a simpler case: 
the dynamics of particles (and its simulation)

 Particle = ideal object shaped like a point,
with all the mass concentrated in that point

 Particles-only is easier because the orientation (rotation) is 
irrelevant, and so the following are also irrelevant
 the center of mass (it’s the position of the particle itself);
 the distribution of mass, i.e. the moment of inertia (there’s none);
 the torques (instead, there’s only forces);
 the angular velocity (instead, there’s only linear velocities)

 These things are only relevant again for non-point sized (rigid) 
objects

 The basic algorithms, however, are the same.
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State of a particle (point sized obj)
in a physical simulation

not used for point sized objects!

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

One possibility in a game phys engine 
is to only simulate point-particles.

Simpler: no rotation needed!

We will see later how to still get rigid 
bodies back.

For now, we focus on this simpler case.

Newtonian Dynamics (for particles) 

𝑓(𝑡) = function( 𝐩 𝑡  , . . . )

𝑎⃗ 𝑡 =
𝑓 𝑡

𝑚

𝑣⃗ 𝑡 = 𝑣⃗଴ + න 𝑎⃗ 𝑡ᇱ ⋅ 𝑑𝑡ᇱ

௧

௧ᇲୀ଴

𝐩(𝑡) = 𝐩଴ + න 𝑣⃗ 𝑡ᇱ ⋅ 𝑑𝑡′

௧

௧ᇲୀ଴

describes the forces 
given all the particle positions (and more)
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Newtonian Dynamics:
equivalent formulation

𝑓(𝑡) = function( 𝐩 𝑡  , . . . )

𝑣⃗ 𝑡 = 𝐩̇ 𝑡

𝑎⃗ 𝑡 = 𝐩̈ 𝑡 =
𝑓 𝑡

𝑚

𝐩̇(0) = v଴

𝐩(0) = p଴

derivative w.r.t. time 

Dynamics (Newtonian)

forces

acceler.

velocity

positions
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An obvious remark, but

They are just artificially made to flow in sync… usually
 But (e.g.) not when: 

game is paused (𝑡 is constant), replays, fast forwards, reverses…

Simulation
time ≠ Wall

time

the 𝑡 in 
all the slides 

An obvious remark, but

Occasionally, the difference is spectacularly exploited by clever gameplay designs!

PoP – the sands of times
(Ubisoft, 2003)

Braid
(Jonathan Blow, 2008)

The longing
(Studio Seufz, 2020)

Simulation
time ≠ Wall

time

the 𝑡 in 
all the slides 
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Computing physics evolution

 Analytical solutions:

state = function( t )

Given force functions (and acc), find 
the functions (pos, vel,…) in the 
specified relations:

 Numerical solutions:

1. state( t = 0) init
2. state( t + 1)

do_1_step( statet )

3. goto 2













C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfunztf

0

0

0

0

)()(

)()(

/)()(

),...)(()(









Analytical solutions

଴

଴

Find the positions as a function 𝐩 𝑡  of time 𝑡
such that…

sometimes, 
it’s a function of 
other things too
(e.g. velocity,
time…). 
Harder to solve!

the initial conditions
(for speed and position)

a given function

A system of ODE
(Ordinary Differential Equations)

that is,
a trajectory:
a position over time

derivative w.r.t. time 
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Analytical solution
 Difficult to find

 a function such that… 

 Often, it doesn’t even «exist»
 in a form that we can write using common functions such as

polinomials, algebraic functions,
exponential trigonometry, etc

 When it exists, they are very convenient
 we can find the position / the velocity for any given t
 we can predict the status of the simulation for any given time

 Examples of systems that admit an analytical solution:
 systems with a force function is constant w.r.t. positions & velocities

(solution: just find its integral, twice)
 two bodies (no more than two!), subject to reciprocal gravity force
 a single pendulum, if one accepts an approximation

(only good for small oscillations)

 Most other systems don’t!

Simple example: 
analytical solution











y

x

v

v
v0













0

0
0p












8.9

0
mf



x

y
in this specific case,
acc is a constant
(does not depend on pos)

«ballistic shooting»
of a mass,
in 2D, ignoring friction...
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Simple example: 
analytical solution

Solving…










































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



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
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
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





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










2
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0

0
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0
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0
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0
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Simple example: 
analytical solution

Final result:

















































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Numerical integration

𝑓(𝑡஼) = function(𝑝(𝑡஼), . . . )

𝑎⃗(𝑡஼) = 𝑓(𝑡஼)/𝑚

𝑣⃗(𝑡஼) = 𝑣⃗଴ + න 𝑎⃗(𝑡) ⋅ 𝑑𝑡

௧಴

଴

𝑝(𝑡஼) = 𝑝଴ + න 𝑣⃗(𝑡) ⋅ 𝑑𝑡

௧಴

଴

It’s our way to solve the ODE

Numerical integration

 A numerical integrator computes the integral as 
summed area of small rectangles
 For a physics engine, this means just updating velocity and 

positions at each physics step

 A crucial parameter is the width of the rectangles i.e.
dt = the duration of the physics step (in virtual time)
 If physics system perform N steps per second: 

dt = 1.0 sec / N
 N is not necessarily same rendering frame rate

e.g.: rendering 30 FPS but physics: 60 steps per seconds
 dt is not necessarily constant during the simulation

(but in most system, it is)
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Rendering Frames-per-Seconds (FPS) 
vs Physics Steps-per-Seconds

wall time

rendering rendering rendering rendering renderingrendering

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

𝑑𝑡

Timesteps can be variable for each 
frame

wall time

rendering rendering rendering rendering renderingrendering

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

physics
step

𝑑𝑡଴

physics
step

𝑑𝑡ଵ
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Numerical methods: features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate
 must be at least plausible

 (if stays plausible, differences from reality are acceptable)
 How robust
 rare completely wrong results

 (and never crash)
 How generic
 Which phenomena / constraints / object types is it able to 

recreate?
 requirements depend on the context (ex: gameplay)

Euler integration methods

(1) Evaluate the force
on each particle
as a function of positions
(of this and/or other particles)
and any other things needed things too

(2) acceleration
of each particle given by:
total force actiung on it divided by its mass

(3) Update position with velocity

(4) Update velocity with acceleration

green = state variables
blue = temp variables

For each step:

଴

଴
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Euler integration methods

init

one 
step dttt a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

𝐩 ← ⋯

v ← ⋯

Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ = 𝑓/𝑚
𝑣⃗௜ାଵ = 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ = 𝑝௜ + 𝑣⃗௜ ⋅ 𝑑𝑡
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Simple example: 
numerical solution
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Same phenomena
of previous example

𝑑𝑡 = 1 sec

here, for instance,

Simple example: 
numerical solution (with =1 sec)

init

…76543210Time:

…(2,-4)(2,-3)(2,-2)(2,-1)(2,0)(2,1)(2,2)(2,3)vel:

…(14,0)(12,3)(10,5)(8,6)(6,6)(4,5)(2,3)(0,0)pos:

x

y

0

1

2
3 4

5

6

7

step step step step step step step step

𝑓 = 𝑚 ⋅
0

−1

𝑎⃗ = 𝑓/𝑚

𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡

𝑝 = 𝑝 + 𝑣⃗ ⋅ 𝑑𝑡
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Physics evolution computation

 Analytical solutions:  Numerical solutions:

x

y

0

1

2
3 4

5

6

7

x

y

𝑝௫

𝑝௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠(𝑡𝑖𝑚𝑒)

𝑣௫

𝑣௬
= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑣𝑒𝑙(𝑡𝑖𝑚𝑒)

Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 Formulas found 

case by case
(often they don’t even exist)

 NOT USED
(but, for instance, useful to to
make predictions for, e.g. A.I.)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 USED FOR DYNAMICS

67

68



3D Video Games                                
05: Game Physics - Dynamics 1

2024-04-04

Marco Tarini                                  
Università degli studi di Milano     27

Integration errors 

 A numerical integrator only approximates 
the actual value of the integrals

 The discrepancy (simulation errors) accumulates with 
virtual time during all the simulation

 How much error is accumulated? 
 It depends on  𝑑𝑡
 smaller 𝑑𝑡 ⇒ smaller error (simulation is more accurate)
but, clearly
 smaller 𝑑𝑡 ⇒ more steps are needed 

(for simulate the same virtual time)
⇒ simulation is more computationally expensive, 
but smaller errors,  

Order of convergence

 How much does the total error decrease
as dt decreases?
 That’s called the Order of the simulation

 1st order: the total error can be as large as O( dt1 )
 “if the number of physics steps doubles

(physical computation effort doubles)
dt becomes halves and errors can be expected to halve”

 The error introduced by each single step is O( dt2 ),

 The Euler seen is 1st order
 This is not too good, we want better
 Note: The error is usually not that bad as linear with dt, 

but they can be
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The integration step 
of any numerical methods (summary)

: delta of virtual time from last step 
 the “temporal resolution” of the simulation!

 if large: more efficiency
 fewer steps to simulate same amount of virtual time

 if small: more accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 …  1 sec / 30
 i.e. a step simulates around 16 … 32 msec. of virtual time
 note: it’s not necessarily the same refresh rate of rendering 

(FPS of rendering ≠ FPS of physics. Rendering can be less!)
 note: 𝑑𝑡 is not necessarily the same in all physics steps

(need more accuracy now? Decrease dt

number of physics 
steps per sec, or 
«physics FPS»

Effect of integration errors
of System Energy
 Because of integration errors:

simulated solutions ≠ “real” solutions
 In a real system, the total energy can never increase 

 typically, it decreases over time, due to dissipations
 that is, attrition turns dynamic energy into heat

 Therefore, a particularly nasty integration error is when 
the total energy of the system increases over time
 e.g.: a pendulum swings wider and wider

 Particularly bad because:
 compromises stability

(velocity = big, displacements = crazy, error = crazy)
 compromises plausibility 

(we can see it’s wrong)
 A simple way to avoid this: 

make sure the simulation always includes attritions
 makes simulation more stable + robust
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Other numerical integrators
(“numerical ways to compute integrals”)

 Some commonly used alternatives (among MANY!):
 “Forward” Euler method (the one seen so far)
 Symplectic Euler method
 Leapfrog method (next lecture)
 Verlet method (next lecture)

 These are just variants of each other – let’s see them!
 From the code point of view, no big change
 They can differ in accuracy / behavior
 They can have different “orders of accuracy”
 Note: a more accurate method is also more efficient

(larger 𝑑𝑡 are possible, so fewer steps are necessary)

Forward Euler Method: limitations

 efficiency / accuracy: not too good
 error accumulated over time = linear in dt
 it’s only a “first order” method
 Doubles the steps = halve the dt , only halves the errors 

(can be better, but no guarantees)
 scarce stability for large dt
 minor problem: no reversibility, even in theory
 real Newtonian Physics is reversible:

flip all velocities and forces ⇒ go backward in time. 
 In our simulation (with Euler): this doesn’t work exactly 
 Ability to go reverse a simulation would be useful in games! 

E.g. replays in a soccer game ?
 Pro tip: basically, reverse time direction never done like this  

To go backward in time accurately, store states
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Forward Euler

init 
state

one 
step dttt 

𝐩 ← ⋯

v ← ⋯

f⃗  ← 𝑓𝑢𝑛(𝐩, … )

a ← f⃗/𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

Symplectic Euler

init 
state

one 
step dttt 

𝐩 ← ⋯

v ← ⋯

f⃗  ← 𝑓𝑢𝑛(𝐩, … )

a ← f⃗/𝑚

v ← v + a ⋅ 𝑑𝑡

𝐩 ← 𝐩 + 𝑣⃗ ⋅ 𝑑𝑡
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Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ ← 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ ← 𝑓/𝑚
𝑣⃗௜ାଵ ← 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ ← 𝑝௜ + 𝑣⃗௜ ⋅ 𝑑𝑡

Symplectic Euler pseudo code
(aka semi-implicit Euler)
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = compute_force( position ) / mass;
velocity += acceleration * dt;    
position +=     velocity * dt;

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

Equivalent to…
𝑓௜ ← 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . . )

𝑎⃗௜ ← 𝑓/𝑚
𝑣⃗௜ାଵ ← 𝑣⃗௜ + 𝑎⃗௜ ⋅ 𝑑𝑡
𝑝௜ାଵ ← 𝑝௜ + 𝑣⃗𝒊ା𝟏 ⋅ 𝑑𝑡

just flip the order
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…7 dt6 dt5 dt4 dt3 dt2 dt1 dt0 dttime:

…********pos:

…********vel:

********acc:

Forward Euler:

2

1

3

Symplectic Euler:

…7 dt6 dt5 dt4 dt3 dt2 dt1 dt0 dttime:

…********pos:

…********vel:

********acc:

3

1

2

Forward Euler VS Symplectic Euler
(warning: over-simplifications)

 From the code point of view, they are very similar
 The semantics changes:
 in Symplectic Euler 

the position altered using next frame velocity 
 (it’s “wrong”, in a sense – but works better)

 Similar properties, but better in practice
 Same order of convergence (still just 1 )
 On average, better behavior:

more stable and accurate
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Forces:
examples

 Gravity
 Constant · m, near the surface of a planet
 Function of positions in a space simulation

 Wind pressure
 Depends on the area exposed in the wind direction 

 Electrical / magnetic forces
 Buoyancy (ita: forza di Archimede)
 Depends on the weight of the submerged volume

 Mechanical springs 
 simple model: Hooke’s law – see later

 Shock waves (explosions)
 Fake / “Magic” control forces 
 added for controlling the evolution of the system, 

not physically justified

. . .

𝑓 = function(𝐩, . . . )
. . .

Primarily, a function of
the positions

But not always,
and sometimes
not only
of positions
(also: velocities?
Global time?)

Forces: control forces 

 Example: the player pressing the forward button
⇒ a forward force is applied to his/her avatar
 no physical justification
 “Don’t ask questions, physics engine”

 According to many:
it’s better when that’s not done much
 the more physically justified the forces, the better
 for example: does the car accelerate…

because a torque is appied to its two traction wheels   VS
because a force is applied to its body

 usually much harder to cortrol
 see also: gameplay VS cosmetics, control VS realism, 

emerging behaviours
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Example of forces: 
gravitational force on a plantet surface

 Given a particle with (gravitational) mass  𝑚

𝑓௔ = 𝑔 𝑚    d෠ୈ୓୛୒

force 
magnitude

(positive
scalar)

force
direction
(versor)

some global constant
dependent on… the planet

Notes: 
• does not depend on position,

only on mass
• will produce a 

constant acceleration
(regardless of mass!)
when divided by
(inertial) mass 𝑚

Forces: Springs 
(Hooke’s law)

 Simplified model for elastic springs
 One spring connects two 

particles in 𝐩௔ and 𝐩௕

 Characterized by:
1. Rest length ℓ 

2. Stiffness 𝑘

 Spring force:
counteracts expansion
and compression

Pa

Pb

f௔ = 𝑘 𝐩௕ − 𝐩௔ − ℓ
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

f௕ = - f௔
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Forces: Springs 
(Hooke’s law)

f௔ = 𝑘 𝐩௕ − 𝐩௔ − ℓ   
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

f௕ = - f௔

force magnitude
(scalar)

(positive or negative)

force direction
(versor)

elongation / compression

force to be applied
to particle a

force to be applied
to particle b

Mass and Spring systems

 Useful for deformable objects
 for instance: elasitic ropes (or hairs)

Extra springs,
to model resistance

to bending
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Mass and Spring systems

 For instance: cloth

img by msqrt (pauli kemppinen)by Blizzard Entertainment

Mass and Spring systems
can model…

 Elastic deformable objects (aka “soft bodies”)
 Elastic = go back to original shape
 Easily modelled as compositions of (ideal) springs.

 Plastic deformable objects? (yes, but not easy)
 Plastic =  assume deformed pose permanently
 Dynamically change rest-length L in response to large 

compression/stretching, in certain conditions (not easy)
 Rigid bodies / inextensible ropes ? (no they can’t)
 Increase spring stiffness? k → ∞
 Makes sense, physically, but… 
 Large k ⇒ large f ⇒ instability ⇒ unfeasibly small dt needed
 Doesn’t work. How, then? see later
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