3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

2024-04-08

Course Plan

Introduction @

Mathematics for 3D Games @@ ©®®©® ®
Scene Graph @

Game 3D Physics .®. + Q00

Game Particle Systems ¢

Game 3D Models D @

Game Textures @@

Game Materials €

Game 3D Animations D@ @
Networking for 3D Games @

3D Audio for 3D Games @

. Rendering Technigues for 3D Games @

lec.
lec.
lec.
lec.
lec.
lec.
lec.

lec.

L N DU R WwWN R

lec.

=
Q

lec.

=
[EEN

lec.

=
N

lec.

=
w

lec.

. Artificial Intelligence for 3D Games @

92

Example of forces: etc

e Remember all forces acting on a particle add up!
(vector summatory)

f fun(p, ...)
en a—f/m

p—p+v-dt
Vev+a-dt

'/)

_ J

94

Universita degli studi di Milano

3D Video Games 2024-04-08
05: Game Physics - Dynamics 1

Ay
Example of forces: L

gravitational forces (near a planet)

e Given a particleinp
with (gravitational) mass m

f=gm aDown

e Note: does not depend on position m

A

e Note: if this is the only force, acceleration is just @ = — 39 dpown
m

97

Example of forces: L

gravitational forces (in open space)

]7’ @ P»
e Given two particles in p, and pp °® . A
with (gravitational) masses m, and my, Pa

—>= Gmamb Ppr — Pa
" lps = pall? llps — pall

_ Gmg,my, ()
Py — pall® P2~ Pa

fo=~fa

98

Marco Tarini
Universita degli studi di Milano 2

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

2024-04-08

Example of forces: electric forces

e Given two charged particles in p, and pp
with positive or negative charges q, and g

7 _ —K qq qp Ppr — Pa _ —K qa qp ®
* “pb - pallz ”pb - pa" ”pb - pa”3
@
Pa

100

Example of forces: wind pressure

e \Wind is a force acting on surfaces

e The larger the exposed surface to the wind,
the STRONGER / MORE INTENSE the force

the larger the force

Po

P1

P2

[—hy

]
:.‘“,}L,__
Sl
- pa)
@ P»
L |
-:I. . L

e The more orthogonal the surface to the wind direction,

e The stronger the wind pressure w (a vector), the larger the force

7 = || @1 = po) x 2P0 - 9] .
= |lz - - W =
2 P1—Po P2—Po il

101

Universita degli studi di Milano

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Example of forces: buoyancy e
e Opposite of gravity force E
e of the submerged part... if it was made of water
e mass of the submerged part = its volume times density of water
fe

102

Attrition (or friction) forces i
e /sotropic friction forces :

e aforce that opposes any motion, regardless of its direction
e direction: always opposite of current velocity direction

e magnitude: proportional to the speed
(= magnitude of velocity vector)

e note: this force depends on velocity, not positions.

e models the effect of the medium where the motion happens
(air, water, thin space...)

e the denser the medium, the stronger the force
(water >> air >> thin space)

Planar friction forces:
e A force that happens when things slide against each other
e Always parallel to the contact plane (orthogonal to the normal)

103

Universita degli studi di Milano

2024-04-08

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Tl‘—]
Attrition (or friction) forces: "‘-L,::“_~

simulate them with velocity damping

e A useful trick to simulate isotropic friction:
“velocity damping”
e simply reduce all velocity vectors by a fixed proportion

e for example: scale velocity down by 2% per second
(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

e Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on speed.
e For planar friction:
e Split velocity into parallel / orthogonal parts
e Apply different Drag factors to each parts

104

. =

(in one example)

e Objective: “reduce speed by 1.5% every second”

e So:

e After 1 second: <« (1.0-10.015) v
« (1.0 — 0.015)? v
« (1.0 — 0.015)* v

« (1.0 — 0.015)% ¥

e After 2 seconds?
e After k seconds?
After dt seconds?

S T T T

Which can be approximated with v « (1.0 — 0.015 - dt)v

The approximation is good when this is small

Velocity Damping: how to Wy

105

Universita degli studi di Milano

2024-04-08

3D Video Games 2024-04-08
05: Game Physics - Dynamics 1

it
. « . £ .
Velocity Damping: Vear
pseudo-code
Vec3 position =
Vec3 velocity =
void initState() {
position = ..
velocity = ..
}
void physicStep(float dt)
{
Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;
velocity *= (1.0 - DRAG * dt);
}
void main() {
initState();
while (1) do physicStep(1.0 / FPS);
}
106
L 1
A « . Fo. Y
Velocity Damping: notes s

e Velocity Damping is useful for robustness,
e Prevents the energy to ever increase
e Problems of Velocity Damping

e it may exaggerate frictions of, e.g., air,
especially in absence of contacts

e it's acrude approximation:
attrition forces are not really linear with speed
e |n practice:
e low drag: hardly noticeable (in the short run), increases robustness

e high drag: everything feels like to be moving in molasses;
(ita: melassa); everything quickly grinds to a halt

e super high drag: (e.g. 10% per sec) basically, no inertia anymore.
May be useful to converge to (local) minimal energy states:
your simulator is basically solver for statics not dynamics

107

Marco Tarini
Universita degli studi di Milano 6

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Continuity of pos and vel *“JL:,,-

e In real Newtonian physics the state
(pos and vel) can only change continuously

e No sudden jump!
e |n practice, sometimes is useful to artificially break
continuity in the simulations
e Discontinuous changes:
e for positions: “teleports”
e forvelocity: “impulses”

e Inthe real world, those variations can well be
consequences of forces, but these forces are not modelled
as such, in our system

108

n 1

o

N .
a discontinuous F.
change of state (position) &

Dynamics displacements

. : U J
VS kinematic —
v

p=p+Vv-dt p=p+dp
aka dynamic aka Kinematic
displacements displacements
Justified Just
by physics “teleportation”

109

Universita degli studi di Milano

2024-04-08

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

)

SR

Impulses VS Forces

a discontinuous

o

change of state (velocity)

;217+(j7/m)-dt ;zm(f/m)}{

e Forces (continuous) e Impulses
e Continuous application e Infinitesimal time
e every frame e unatantum

they model very intense but

short forces
(such as impacts)

110
Impulses VS Forces e
e force:

e it determines an acceleration
e acc determines a (continuous!) change of vel
e physically correct

e Impulse :
e a (discontinuous!) change of vel
e useful to control a simulation (direct change of velocity)
e a physical interpretation: a force with:
e application time approaching zero
e magnitude approaching infinity
e Useful to model phenomena with a time scale << dt
e ex: a tennis ball rebounding against a tennis racket

111

Universita degli studi di Milano

2024-04-08

3D Video Games 2024-04-08
05: Game Physics - Dynamics 1

P
Impulses VS Forces Wi

e what does truly happen when it bounces off the ground?

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse-based approximations

112

Impulses VS Forces dls

Sl

L

e what does truly happen when it bounces off the ground?

3l

0 msec 1 msec 2 msec 3 msec 4 msec

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse based approximations

113

Marco Tarini
Universita degli studi di Milano 9

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Impulses VS Forces " 17"

e what does truly happen when it bounces off the ground?

no impact huge no impact
force force force
Is A v A N
—méﬁﬂ—
dt

e This can only be modelled as an impulse, not a force

e See also collision response, later

114

2

.
Next: better integration methods for M:,“L
(Newtonian) dynamics

/ forces
-

positions

N/
@: velocity
\ J

(Y

acceler.

-

115

Universita degli studi di Milano

2024-04-08

10

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

0 N
Leapfrog Integration Method EE
116
Leapfrog Integration Method L
e Basic Idea:

store positions at time k - dt (0, dt, 2dt, 3dt...)
but store velocities at time k - dt + Y2 dt

e Equivalent to use a summatory of
the areas of trapezoids,
(having base dt and height v(t))
not rectangles, to compute the integral

117

Universita degli studi di Milano

2024-04-08

11

3D Video Games
05: Game Physics - Dynamics 1

Leapfrog Integration Method

t (inap

118

Leapfrog Integration
first step

0.0 0.5 1.0 1.5 2.0

t (inap

| | |
T I I

%

a=f(py,)

Voo =V, +d-di)2

119

Marco Tarini
Universita degli studi di Milano

2024-04-08

12

3D Video Games 2024-04-08
05: Game Physics - Dynamics 1

Leapfrog Integration

0.0 0.5 1.0 15 2.0 25 t (in dt

Dy =Dy +Vs-dt Py =p v, s-di D3 =Py +V,5-dt

a=f(py,) a=f(py,..)

Vis=Vysta-dt V,s =V +a-dt

120

Leapfrog method: pros and cons

e Same cost as Euler —and basically same code

e Velocity stored in status = velocity “half a dt ago”
(and after updating it: “half a frame in the future”)

e Only real difference: the initialization of speed
Better theorical accuracy, for the same dt

e better asymptotic behavior:
it’s a “second order” system instead of first!

e cumulated error: proportional to dt? instead of dt
e error per frame: proportional to dt3 instead of dt?
Bonus: fully reversible!

e intheory only. Beware numerical errors.

But: requires fixed dt during all the simulation
e for the theory to work as advertised

121

Marco Tarini
Universita degli studi di Milano 13

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

2024-04-08

Verlet integration method

e |dea: remove velocity from state
Instead, store previous position

e Velocity is now implicit
e |t’s defined by:
e current pos Prow

e last pos Pora
which we need to record

Pold

Pnow = Poia T v - dt
—
UV = (Pnow — Poia)/dt

5 . db
M. Pnow
o

<: Euler & variants

<]; Verlet

n
"‘5%-_;,‘.‘11 1

122

L
Verlet integration method: L0
(modifying Euler integration...)
init Pnow =
state. Pord = - - -
V¢ >
]Z’ =]:unCt(pnowr e)
- — d
one 4= 1/ s
step UV = (Prnow — Poia)/dt
V=vV+d-dt
Pnext = Pnow t+ v-dt
N J
123

Universita degli studi di Milano

14

3D Video Games 2024-04-08

05: Game Physics - Dynamics 1

Verlet integration method L

(modifying Euler integration...)

init Pnow < -

state Poltd € +--

| r)

f = funct(Ppow) e

> z o now
ol f/m Pnow < Pnext
step — 2Pnow — Potg + @ - dit?

Prnext Pnow Poida

\ J

124

Verlet integration method: L

geometric interpretation

N
v
. Prnext
v
Pnow

Potd

Prext = 2 *Pnow — 1 - Powa

Prext Can be written as
an extrapolation
of Prow, Poia :

Prext = Mix(Poia » Prow, 2)

125

Marco Tarini
Universita degli studi di Milano

15

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Verlet: characteristics WE

e Velocity is kept implicit
e but that doesn’t save RAM:
we need to store previous position instead

e (apointinstead of a vector: same memory)
e Good efficiency / accuracy ratio

e Per-step error: linear with dt

e accumulated error: order of dt? (second order method)
e Extra bonus: reversibility

e it’s possible to go backward in t and
reach the initial state from any state

e only in theory... careful with implementation details

126

. =

Verlet integration + e

“Position Based Dynamics” (PBD)

init Pnow < ---

state Poid <

_B \

f — fun(Pnow)
pold — pnow

a«— f/m Prow < Pnext

one
step Pnext < 2pnow — Poid +a- dtz

Enforce constraints on (pnext) Q

\

127

Universita degli studi di Milano

2024-04-08

16

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

Position Based Dynamics (PDB) L
a formula

e A positional constraint is with =" > < etc.
-

an equality/inequality «———
involving the positions of particles.
e Useful, for example, to model consistency conditions

e Like “solid objects don’t compenetrate each other”,
or “steel bars won’t become shorter or longer than they are”

e We will see many examples
We enforce (impose) positional constraint directly
by displacing the positions of particles

e Thanks to Verlet: this displacement automatically causes
some appropriate update of the velocity!

e it's not necessarily correct, but it’s plausible and robust

128

i . Fr
Example of a positional constraint L0

«! want all particles to stay above ground
(that is, their y must never be negative) »

Enforce this constraint: triviall

for (each particle i)
{

if (p[i]l.y < 0) p[i]l.y = 0O;
}

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

129

Universita degli studi di Milano

2024-04-08

17

3D Video Games 2024-04-08
05: Game Physics - Dynamics 1

Example of a positional constraint R
(here, in 2D physics)

«| want particles to stay
inside a 2D box [0—100] x [0 —100] »

100 Enforce this constraint: simple clamp!

% for (each particle i)
x {
3% pli] .x = clamp(p[i].x, 0, 100);
plil.y = clamp(p[i].y, 0, 100);

% }
0 100

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

130

., N
Verlet + Position Based Dynamics. %5y

Advantages

e flexibility: different constraints can be used to model
many different phenomena
e Useful constraints are straightforward to define
e They are easy to impose (they involve only few particles)
e They can be used to model many possible phenomena
e See following slides for examples

e robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
e For example: a ball won’t ever be seen outside the box

containing it — and it will also recover from mistakes

e No forces / impulses are needed to enforce any such

consistency conditions

131

Marco Tarini
Universita degli studi di Milano 18

3D Video Games

05: Game Physics - Dynamics 1

Marco Tarini

How to enforce positional constraiont? %55y
(see next lecture for the anwser)
When enforcing constraints...
e |f a constraint is valid, no problem.
e |f it doesn’t, there can be many way to change
particle POSITIONS, so that it does
/A Which one to pick?
132
P
Verlet: caveats LrEas

(see next lecture for solutions)

A\it assumes a constant dt (time-step duration)
e if dtvaries: corrections are needed! (how?)

A\ Q: how to act on velocity (which is now implicit)?
e for example, how to apply impulses ?
e A:change Pyiq instead (how?)

A\Q; how to act of positions w/o impacting velocity?
e for example, to apply teleports / kinematic motions ?
e A:change both Ppew and Poig (how?)

A\ Q: how to apply velocity damps?

133

Universita degli studi di Milano

2024-04-08

19

