
3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Example of forces: etc

one
step

a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

 Remember all forces acting on a particle add up!
(vector summatory)

92

94

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 2

Example of forces:
gravitational forces (near a planet)

 Given a particle in 𝐩
with (gravitational) mass 𝑚

 Note: does not depend on position
 Note: if this is the only force, acceleration is just

Gravity acceleration constant
(scalar,depends on the planet)

�⃗� =
𝑚

𝑚
𝑔 𝑑

Downward versor

Gravitational mass

Inertial mass

Example of forces:
gravitational forces (in open space)

 Given two particles in 𝐩 and 𝐩
with (gravitational) masses 𝑚 and 𝑚

+

- 𝐩𝒃

𝐩𝒂

𝑓 =
𝐺 𝑚 𝑚

𝐩 − 𝐩

𝐩 − 𝐩

𝐩 − 𝐩

force
magnitude
(a scalar)

force
direction
(a versor)

=
𝐺 𝑚 𝑚

𝐩 − 𝐩
 𝐩 − 𝐩

a global constant

𝑓 = −𝑓
this image from the simulation

at https://www.masswerk.at/spacewar/

As used by
the first
videogame:
spacewars!

𝑓
𝑓

97

98

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 3

Example of forces: electric forces

 Given two charged particles in 𝐩 and 𝐩
with positive or negative charges 𝑞 and 𝑞

+

- 𝐩𝒃

𝐩𝒂

𝑓 =
−𝐾 𝑞 𝑞

𝐩 − 𝐩

𝐩 − 𝐩

𝐩 − 𝐩

force
magnitude

(scalar)
positive or
negative

force
direction
(versor)

=
−𝐾 𝑞 𝑞

𝐩 − 𝐩
 𝐩 − 𝐩

some global constant

Example of forces: wind pressure

 Wind is a force acting on surfaces
 The larger the exposed surface to the wind,

the STRONGER / MORE INTENSE the force
 The more orthogonal the surface to the wind direction,

the larger the force
 The stronger the wind pressure 𝑤 (a vector), the larger the force

𝑤

𝐩𝟎

𝐩𝟏

𝐩𝟐

𝑓 =
𝟏

𝟐
(𝐩𝟏 − 𝐩𝟎) × (𝐩𝟐−𝐩𝟎) 𝑤

𝑤

𝑤

area vector

force magnitude
(scalar)

force
direction
(versor)

(apply 1/3 of 𝑓 on each particle)

100

101

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 4

Example of forces: buoyancy

 Opposite of gravity force 𝑓
 of the submerged part... if it was made of water
 mass of the submerged part = its volume times density of water

𝑓

mass/volume
aka “specific mass”

or whichever liquid

Attrition (or friction) forces

 Isotropic friction forces :
 a force that opposes any motion, regardless of its direction
 direction: always opposite of current velocity direction
 magnitude: proportional to the speed

(= magnitude of velocity vector)
 note: this force depends on velocity, not positions.
 models the effect of the medium where the motion happens

(air, water, thin space…)
 the denser the medium, the stronger the force

(water >> air >> thin space)

 Planar friction forces:
 A force that happens when things slide against each other
 Always parallel to the contact plane (orthogonal to the normal)

102

103

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 5

Attrition (or friction) forces:
simulate them with velocity damping

 A useful trick to simulate isotropic friction:
“velocity damping”
 simply reduce all velocity vectors by a fixed proportion
 for example: scale velocity down by 2% per second

(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

 Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on speed.

 For planar friction:
 Split velocity into parallel / orthogonal parts
 Apply different Drag factors to each parts

Velocity Damping: how to
(in one example)

 Objective: “reduce speed by 1.5% every second”
 So:

 After 1 second: �⃗� ← 1.0 − 0.015 �⃗�

 After 2 seconds? �⃗� ← 1.0 − 0.015 �⃗�

 After 𝑘 seconds? �⃗� ← 1.0 − 0.015 �⃗�

 After 𝑑𝑡 seconds? �⃗� ← 1.0 − 0.015 �⃗�

 Which can be approximated with �⃗� ← 1.0 − 0.015 𝑑𝑡 �⃗�

 The approximation is good when this is small

Drag factor: 0.015

e.g 1/60 = 0.17 sec

104

105

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 6

Velocity Damping:
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

Velocity Damping: notes
 Velocity Damping is useful for robustness,

 Prevents the energy to ever increase

 Problems of Velocity Damping
 it may exaggerate frictions of, e.g., air,

especially in absence of contacts
 it’s a crude approximation:

attrition forces are not really linear with speed

 In practice:
 low drag: hardly noticeable (in the short run), increases robustness
 high drag: everything feels like to be moving in molasses;

(ita: melassa); everything quickly grinds to a halt
 super high drag: (e.g. 10% per sec) basically, no inertia anymore.

May be useful to converge to (local) minimal energy states:
your simulator is basically solver for statics not dynamics

106

107

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 7

Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially break
continuity in the simulations

 Discontinuous changes:
 for positions: “teleports”
 for velocity: “impulses”
 In the real world, those variations can well be

consequences of forces, but these forces are not modelled
as such, in our system

Dynamics displacements
VS kinematic

aka dynamic
displacements

Justified
by physics

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

Just
“teleportation”

. . .
p = p + 𝑑p
. . .

a discontinuous
change of state (position)

108

109

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 8

Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

...

/

...

dtmfvv

 Impulses
 Infinitesimal time
 una tantum

...

/

...

mivv

a discontinuous
change of state (velocity)

they model very intense but
short forces
(such as impacts)

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 physically correct

 Impulse :
 a (discontinuous!) change of vel
 useful to control a simulation (direct change of velocity)
 a physical interpretation: a force with:

 application time approaching zero
 magnitude approaching infinity

 Useful to model phenomena with a time scale << dt
 ex: a tennis ball rebounding against a tennis racket

110

111

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 9

 what does truly happen when it bounces off the ground?

 very strong forces (but not infinite)
 applied for a very short time (but not instantaneous)
 see collision response later for details

about the impulse-based approximations

Impulses VS Forces

Impulses VS Forces

 what does truly happen when it bounces off the ground?

 very strong forces (but not infinite)
 applied for a very short time (but not instantaneous)
 see collision response later for details

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v

112

113

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 10

Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
 See also collision response, later

 what does truly happen when it bounces off the ground?

Next: better integration methods for
(Newtonian) dynamics

forces

acceler.

velocity

positions

114

115

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 11

Leapfrog Integration Method

Leapfrog Integration Method

 Basic Idea:
store positions at time 𝑘 𝑑𝑡 (0, dt, 2dt, 3dt…)
but store velocities at time 𝑘 𝑑𝑡 + ½ 𝑑𝑡

 Equivalent to use a summatory of
the areas of trapezoids,
(having base 𝑑𝑡 and height 𝑣(𝑡))
not rectangles, to compute the integral

116

117

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 12

Leapfrog Integration Method

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa

118

119

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 13

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp 5.001

dtavv

pfa

5.05.1

1 ...),(

dtvpp 5.112

dtavv

pfa

5.15.2

2 ...),(

Pos

dtvpp 5.223

Pos

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago”

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of speed

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a “second order” system instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible!
 in theory only. Beware numerical errors.

 But: requires fixed dt during all the simulation
 for the theory to work as advertised

120

121

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 14

Verlet integration method

 Idea: remove velocity from state
Instead, store previous position

 Velocity is now implicit
 It’s defined by:
 current pos 𝐩

 last pos 𝐩
which we need to record

�⃗� = (𝐩 − 𝐩)/𝑑𝑡�⃗� = (𝐩 − 𝐩)/𝑑𝑡

𝐩𝐩

𝐩 = 𝐩 + �⃗� · 𝑑𝑡

𝐩

Euler & variants

Verlet

Verlet integration method:
(modifying Euler integration…)

one
step

expanding
this…

init
state

𝐩 = . . .
𝐩 = . . .

𝑓 = 𝑓𝑢𝑛𝑐𝑡(𝐩 , …)

�⃗� = 𝑓/𝑚
�⃗� = (𝐩 − 𝐩)/𝑑𝑡
�⃗� = �⃗� + �⃗� ⋅ 𝑑𝑡
𝐩 = 𝐩 + �⃗� ⋅ 𝑑𝑡

122

123

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 15

Verlet integration method
(modifying Euler integration…)

𝐩 ⟵ 𝐩
𝐩 ⟵ 𝐩
𝐩 ⟵ 𝐩
𝐩 ⟵ 𝐩

init
state

one
step

𝐩 ⟵ . . .
𝐩 ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛𝑐𝑡(𝐩)

�⃗� ⟵ 𝑓/𝑚
𝐩 ⟵ 2𝐩 − 𝐩 + �⃗� ⋅ 𝑑𝑡

𝐩 ⟵ . . .
𝐩 ⟵ . . .

Verlet integration method:
geometric interpretation

𝐩 = 2 ⋅ 𝐩 − 1 ⋅ 𝐩

𝐩

𝐩

𝐩

𝐩 = 𝑚𝑖𝑥(𝐩 , 𝐩 , 2)

𝐩 can be written as
an extrapolation
of 𝐩 , 𝐩 :

�⃗�

�⃗�

124

125

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 16

Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM:

we need to store previous position instead
 (a point instead of a vector: same memory)

 Good efficiency / accuracy ratio
 Per-step error: linear with dt
 accumulated error: order of dt2 (second order method)

 Extra bonus: reversibility
 it’s possible to go backward in t and

reach the initial state from any state
 only in theory… careful with implementation details

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩 ⟵ 𝐩
𝐩 ⟵ 𝐩

init
state

one
step

𝐩 ⟵ . . .

𝐩 ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩)

�⃗� ⟵ 𝑓/𝑚

𝐩 ⟵ 2𝐩 − 𝐩 + �⃗� ⋅ 𝑑𝑡

Enforce constraints on (𝐩)

126

127

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 17

Position Based Dynamics (PDB)

 A positional constraint is
an equality/inequality
involving the positions of particles.
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”,

or “steel bars won’t become shorter or longer than they are”
 We will see many examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles
 Thanks to Verlet: this displacement automatically causes

some appropriate update of the velocity!
 it’s not necessarily correct, but it’s plausible and robust

a formula
with ‘=‘ ‘>’ ‘<‘ etc.

Example of a positional constraint

«I want all particles to stay above ground
(that is, their y must never be negative) »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

if (p[i].y < 0) p[i].y = 0;
}

Enforce this constraint: trivial!

128

129

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 18

Example of a positional constraint
(here, in 2D physics)

«I want particles to stay
inside a 2D box [0 – 100] x [0 – 100] »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Enforce this constraint: simple clamp!

1000

100

Verlet + Position Based Dynamics.
Advantages

 flexibility: different constraints can be used to model
many different phenomena
 Useful constraints are straightforward to define
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
 For example: a ball won’t ever be seen outside the box

containing it – and it will also recover from mistakes
 No forces / impulses are needed to enforce any such

consistency conditions

130

131

3D Video Games
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini
Università degli studi di Milano 19

How to enforce positional constraiont?
(see next lecture for the anwser)

When enforcing constraints…
 If a constraint is valid, no problem.
 If it doesn’t, there can be many way to change

particle POSITIONS, so that it does
 Which one to pick?

Verlet: caveats
(see next lecture for solutions)

 it assumes a constant dt (time-step duration)
 if dt varies: corrections are needed! (how?)

 Q: how to act on velocity (which is now implicit)?
 for example, how to apply impulses ?

 A: change 𝐩 instead (how?)

 Q: how to act of positions w/o impacting velocity?
 for example, to apply teleports / kinematic motions ?

 A: change both 𝐩 and 𝐩 (how?)

 Q: how to apply velocity damps?

132

133

