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Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 
lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Example of forces: etc

one 
step

a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

 Remember all forces acting on a particle add up!
(vector summatory)
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Example of forces: 
gravitational forces (near a planet)

 Given a particle in 𝐩
with (gravitational) mass 𝑚

 Note: does not depend on position
 Note: if this is the only force, acceleration is just

஽௢௪௡

Gravity acceleration constant
(scalar,depends on the planet)

𝑎⃗ =
𝑚

𝑚
𝑔 𝑑መ஽௢௪௡

Downward versor

Gravitational mass

Inertial mass

Example of forces: 
gravitational forces (in open space)

 Given two particles in 𝐩௔ and 𝐩௕

with (gravitational) masses  𝑚௔ and 𝑚௕

+

- 𝐩𝒃

𝐩𝒂

𝑓௔ =  
𝐺 𝑚௔ 𝑚௕

𝐩௕ − 𝐩௔
ଶ

  
𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force 
magnitude
(a scalar)

force
direction
(a versor)

=      
𝐺 𝑚௔ 𝑚௕

𝐩௕ − 𝐩௔
ଷ

  𝐩௕ − 𝐩௔

a global constant

𝑓௕ = −𝑓௔
this image from the simulation 

at https://www.masswerk.at/spacewar/

As used by 
the first 
videogame:
spacewars!

𝑓௔
𝑓௕
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Example of forces: electric forces

 Given two charged particles in 𝐩௔ and 𝐩௕

with positive or negative charges  𝑞௔ and 𝑞௕

+

- 𝐩𝒃

𝐩𝒂

𝑓௔ =
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଶ   

𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force 
magnitude

(scalar)
positive or
negative

force
direction
(versor)

=      
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଷ   𝐩௕ − 𝐩௔

some global constant

Example of forces: wind pressure

 Wind is a force acting on surfaces
 The larger the exposed surface to the wind,

the STRONGER / MORE INTENSE the force
 The more orthogonal the surface to the wind direction,

the larger the force
 The stronger the wind pressure 𝑤 (a vector), the larger the force

𝑤

𝐩𝟎

𝐩𝟏

𝐩𝟐

𝑓 =
𝟏

𝟐
(𝐩𝟏 − 𝐩𝟎) × (𝐩𝟐−𝐩𝟎) ȉ 𝑤   

𝑤

𝑤

area vector

force magnitude
(scalar)

force
direction
(versor)

(apply 1/3 of 𝑓 on each particle)
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Example of forces: buoyancy

 Opposite of gravity force 𝑓
 of the submerged part... if it was made of water
 mass of the submerged part  = its volume times density of water

𝑓

mass/volume
aka “specific mass”

or whichever liquid

Attrition (or friction) forces

 Isotropic friction forces :
 a force that opposes any motion, regardless of its direction
 direction: always opposite of current velocity direction
 magnitude: proportional to the speed  

(= magnitude of velocity vector)
 note: this force depends on velocity, not positions.
 models the effect of the medium where the motion happens 

(air, water, thin space…)
 the denser the medium, the stronger the force

(water >> air >> thin space)

 Planar friction forces:
 A force that happens when things slide against each other
 Always parallel to the contact plane (orthogonal to the normal)
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Attrition (or friction) forces:
simulate them with velocity damping

 A useful trick to simulate isotropic friction:
“velocity damping”
 simply reduce all velocity vectors by a fixed proportion
 for example: scale velocity down by 2% per second

(“drag factor” = 0.02 / sec) 
(that is, scale velocity vectors by a factor 0.98)

 Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on speed.

 For planar friction:
 Split velocity into parallel / orthogonal parts
 Apply different Drag factors to each parts

Velocity Damping: how to
(in one example)

 Objective: “reduce speed by 1.5% every second”
 So:

 After 1 second: 𝑣⃗  ←  1.0 − 0.015  𝑣⃗

 After 2 seconds? 𝑣⃗  ←  1.0 − 0.015 ଶ 𝑣⃗

 After 𝑘 seconds? 𝑣⃗  ←  1.0 − 0.015 ௞ 𝑣⃗

 After 𝑑𝑡 seconds?  𝑣⃗  ←  1.0 − 0.015 ௗ௧ 𝑣⃗

 Which can be approximated with 𝑣⃗  ← 1.0 − 0.015 ȉ 𝑑𝑡 𝑣⃗

 The approximation is good when this is small

Drag factor: 0.015

e.g 1/60 = 0.17 sec
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Velocity Damping: 
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep( float dt ) 
{ 

Vec3 acceleration = force( positions ) / mass;
position += velocity * dt; 
velocity += acceleration * dt; 

} 

void main(){
initState();
while (1) do physicStep( 1.0 / FPS );

}

velocity *= (1.0 – DRAG * dt);

Velocity Damping: notes
 Velocity Damping is useful for robustness, 

 Prevents the energy to ever increase 

 Problems of Velocity Damping 
 it may exaggerate frictions of, e.g., air, 

especially in absence of contacts
 it’s a crude approximation: 

attrition forces are not really linear with speed

 In practice:
 low drag: hardly noticeable (in the short run), increases robustness
 high drag: everything feels like to be moving in molasses; 

(ita: melassa); everything quickly grinds to a halt
 super high drag: (e.g. 10% per sec) basically, no inertia anymore.

May be useful to converge to (local) minimal energy states: 
your simulator is basically solver for statics not dynamics
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Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially break 
continuity  in the simulations

 Discontinuous changes:
 for positions: “teleports”
 for velocity: “impulses”
 In the real world, those variations can well be 

consequences of forces, but these forces are not modelled 
as such, in our system

Dynamics displacements
VS kinematic

aka dynamic
displacements

Justified 
by physics

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

Just 
“teleportation”

. . .
p = p + 𝑑p
. . .

a discontinuous 
change of state (position)
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Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

 
...

/

...

dtmfvv 


 Impulses
 Infinitesimal time
 una tantum

 
...

/

...

mivv




a discontinuous 
change of state (velocity)

they model very intense but 
short forces 
(such as impacts)

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 physically correct

 Impulse :
 a (discontinuous!) change of vel
 useful to control a simulation (direct change of velocity)
 a physical interpretation: a force with:

 application time approaching zero
 magnitude approaching infinity

 Useful to model phenomena with a time scale << dt
 ex: a tennis ball rebounding against a tennis racket
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 what does truly happen when it bounces off the ground? 

 very strong forces (but not infinite) 
 applied for a very short time (but not instantaneous)
 see collision response later for details 

about the impulse-based approximations

Impulses VS Forces

Impulses VS Forces

 what does truly happen when it bounces off the ground? 

 very strong forces (but not infinite) 
 applied for a very short time (but not instantaneous)
 see collision response later for details 

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v
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Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
 See also collision response, later

 what does truly happen when it bounces off the ground? 

Next: better integration methods for
(Newtonian) dynamics

forces

acceler.

velocity

positions
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Leapfrog Integration Method

Leapfrog Integration Method

 Basic Idea: 
store positions at time 𝑘 ȉ 𝑑𝑡 (0, dt, 2dt, 3dt…)
but store velocities at time 𝑘 ȉ 𝑑𝑡 +  ½ 𝑑𝑡

 Equivalent to use a summatory of 
the areas of trapezoids,
(having base 𝑑𝑡 and height 𝑣(𝑡) )
not rectangles, to compute the integral

116

117



3D Video Games                                
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini                                  
Università degli studi di Milano     12

Leapfrog Integration Method

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step 

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa





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Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp  5.001



dtavv

pfa




5.05.1

1 ...),(


dtvpp  5.112



dtavv

pfa




5.15.2

2 ...),(


Pos

dtvpp  5.223



Pos

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago” 

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of speed

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a “second order” system instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible! 
 in theory only. Beware numerical errors.

 But: requires fixed dt during all the simulation
 for the theory to work as advertised
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Verlet integration method

 Idea: remove velocity from state
Instead, store previous position

 Velocity is now implicit
 It’s defined by: 
 current pos 𝐩௡௢௪

 last pos 𝐩௢௟ௗ
which we need to record

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝐩௢௟ௗ𝐩௢௟ௗ

𝐩௡௢௪  = 𝐩௢௟ௗ + 𝑣⃗  · 𝑑𝑡

𝐩௡௢௪

Euler & variants

Verlet

Verlet integration method:
(modifying Euler integration…)

one 
step

expanding 
this…

init 
state

𝐩௡௢௪ = . . .
𝐩௢௟ௗ = . . .

𝑓 = 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪, … )

𝑎⃗ = 𝑓/𝑚
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡
𝐩୬ୣ୶୲ = 𝐩௡௢௪ + 𝑣⃗ ⋅ 𝑑𝑡
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Verlet integration method
(modifying Euler integration…)

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

init 
state

one 
step

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚
𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

Verlet integration method:
geometric interpretation

𝐩௡௘௫௧ =  2 ⋅ 𝐩௡௢௪ −   1   ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝐩௡௘௫௧ = 𝑚𝑖𝑥(  𝐩௢௟ௗ ,   𝐩௡௢௪,  2)

𝐩௡௘௫௧ can be written as 
an extrapolation
of   𝐩௡௢௪ ,  𝐩௢௟ௗ :

𝑣⃗

𝑣⃗
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Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM: 

we need to store previous position instead
 (a point instead of a vector: same memory)

 Good efficiency / accuracy ratio
 Per-step error: linear with dt
 accumulated error: order of dt2  (second order method)

 Extra bonus: reversibility
 it’s possible to go backward in t and 

reach the initial state from any state
 only in theory… careful with implementation details

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

init 
state

one 
step

𝐩௡௢௪ ⟵  . . .

𝐩௢௟ௗ ⟵  . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚

𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

Enforce constraints on (𝐩௡௘௫௧)

126

127



3D Video Games                                
05: Game Physics - Dynamics 1

2024-04-08

Marco Tarini                                  
Università degli studi di Milano     17

Position Based Dynamics (PDB)

 A positional constraint is 
an equality/inequality 
involving the positions of particles. 
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”, 

or “steel bars won’t become shorter or longer than they are”
 We will see many examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles 
 Thanks to Verlet: this displacement automatically causes 

some appropriate update of the velocity!
 it’s not necessarily correct, but it’s plausible and robust

a formula 
with ‘=‘ ‘>’ ‘<‘ etc.

Example of a positional constraint

«I want all particles to stay  above ground
(that is, their y must never be negative) »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions). 

for (each particle i)  
{

if (p[i].y < 0) p[i].y = 0;
}

Enforce this constraint: trivial!
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Example of a positional constraint
(here, in 2D physics)

«I want particles to stay 
inside a 2D box [0 – 100] x [0 – 100] »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions). 

for (each particle i) 
{

p[i].x = clamp( p[i].x, 0, 100 );
p[i].y = clamp( p[i].y, 0, 100 );

}

a

b

Enforce this constraint: simple clamp!

1000

100

Verlet + Position Based Dynamics.
Advantages

 flexibility: different constraints can be used to model 
many different phenomena
 Useful constraints are straightforward to define 
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see 
 For example: a ball won’t ever be seen outside the box 

containing it – and it will also recover from mistakes
 No forces / impulses are needed to enforce any such

consistency conditions
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How to enforce positional constraiont?
(see next lecture for the anwser)

When enforcing constraints…
 If a constraint is valid, no problem.
 If it doesn’t, there can be many way to change

particle POSITIONS, so that it does
 Which one to pick?

Verlet: caveats
(see next lecture for solutions)

 it assumes a constant dt (time-step duration)
 if dt varies: corrections are needed!  (how?)

 Q: how to act on velocity (which is now implicit)?
 for example, how to apply impulses ?

 A: change  𝐩௢௟ௗ instead (how?)

 Q: how to act of positions w/o impacting velocity?
 for example, to apply teleports / kinematic motions ?

 A: change both  𝐩௡௘௪ and  𝐩௢௟ௗ (how?)

 Q: how to apply velocity damps?
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