Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics

lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Changing the value of $d t$ in Verlet (whenever it's not constant)

Problem:

if $d t$ now changes to a new $d t^{\prime}$
then, all $\mathbf{p}_{\text {old }}$ must be updated to some $\mathbf{p}_{\text {old }}^{\prime}$
Find $\mathbf{p}_{\text {old }}^{\prime}$:

$$
\begin{array}{ll}
\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}\right) / d t & \begin{array}{l}
\text { current velocity } \vec{v} \\
\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}^{\prime}\right) / d t^{\prime}
\end{array} \\
\text { and position } \mathbf{p}_{\text {now }} & \text { must not change }
\end{array}
$$

$$
\Longrightarrow
$$

$$
\mathbf{p}_{\text {old }}^{\prime}=\mathbf{p}_{\text {now }} \cdot\left(d t-d t^{\prime}\right) / d t+\mathbf{p}_{\text {old }} \cdot d t^{\prime} / d t
$$

3D Video Games

Velocity damping in Verlet

implicit

- Velocity at next frame: $\quad \vec{v}=\left(\mathbf{p}_{\text {next }}-\mathbf{p}_{\text {now }}\right) / d t$
- We want to multiply \vec{v} a factor $C_{\text {DAMP }}$
- before applying accelerations
- We can do that using a more general formula for $\mathbf{p}_{\text {next }}$

$$
\mathbf{p}_{\text {next }}=2 \cdot \mathbf{p}_{\text {now }}-1 \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}
$$

$\mathbf{p}_{\text {next }}=\left(1+c_{\text {DAMP }}\right) \cdot \mathbf{p}_{\text {now }}-c_{\text {damp }} \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}$

140

Enforce equidistance constraints
(assuming equal masses for now)

$$
\text { if }\left\|\mathbf{p}_{a}-\mathbf{p}_{b}\right\|>d
$$

$$
\mathbf{p}_{b}
$$

if $\left\|\mathbf{p}_{a}-\mathbf{p}_{b}\right\|<d$


```
Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)
Vector3 v = pa - pb;
float currDist = v.length;
v /= currDist; // normalization of v
float delta = currDist - d ;
pa += ( 0.5 * delta) * v;
pb -= ( 0.5 * delta) * v;
    <
                                    assuming equal mass, we move each particle half the way
                                    (see later for the more general case)
```


Compare:

equidistance constraints vs. springs

- Similar
some constant scalar parameter D
- they both mean:

```
\(/\)
```

these 2 particles "want to be" at this distance (not more, not less)

- but different
- equidistance constraint:
- spring:
- applied during constraint enforcement
- applied during
- directly affects - affects forces, positions therefore accelerations
- models a rigid rod between the two particles
- models a deformable spring between the two particles
- of a given length
- of a given length
- sometimes called a "HARD" constraint
- sometimes called a "SOFT" constraint
- A physic engine can combine them in one object!

Enforcing sets of constraints

- There are many constraints to impose: when you solve one \rightarrow maybe you break another!
- Simultaneous enforcement: computationally expensive
- Practical \& easy solution: just enforce them in cascade (similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
...but at most for N times! (reminder: our simulation is soft real-time)

Enforcing a set of constraints one after the other (in cascade)

- The whole loop for imposing the constraints happen in the constraint enforcement phase on one physics step
- Notes about convergence:
- needed iterations (typically) few: e.g. 1 ~ 10 (efficient!).
- if convergence not reached within a given number of steps: never mind, next frames will fix it (it's fairly robust)
- (it is never reached, if constraints are contradictory)
- Optimization (to reduce the number of needed iterations): solve the most unsatisfied constraints first
Problem: it's a sequential approach! :
- parallelized versions (similar to Jacobi solvers) are possible
- they have a worse convergence in practice (they require more iterations), but each iteration is faster

146

We can combine equidistance constraints to obtain rigid objects!

- Rigid body dynamics as emerging behavior
- without explicitly keeping track their orientation, angular vel, angular acc., etc.

A box in 2D?
(rigid object)
A configuration of:

- 4 particles
- 6 equidistance constraints

148

149

3D Video Games

151

Positional constraint (in general terms)

- A predicate defined on the position(s) of a number of particles (usually, a small number: 1-4)

$$
\mathcal{C}:\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots\right) \rightarrow\{\text { true }, \text { false }\}
$$

- For example, the equidistance constraints is

$$
\mathcal{C}\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}\right) \Leftrightarrow\left\|\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{b}}\right\|=k_{\text {CONST }}
$$

- They can be an equality ($=$) or an inequality (\leq or \geq)

Equality positional constraint:

examples

- Equidistance constraint (the one we have seen): «these N particles must stay at distance k»
- E.g: because they are linked my a metal rod of length k
- Fixed positions:
«this particle must stay in position \mathbf{p}_{a} "
- the particle is "pinned" in position
- trivial to impose, but still usefu!
- Coplanarity / collinearity:
«these N particles must stay on a line / on a plane»

Equality positional constraint: other examples

- Volume preservation:
"The volume delimited by the squishy ballon defined by these particles is a constant $k_{\text {CONST }}$ " (e.g. because it's filled with water)
- How to impose it:

1. Estimate current total volume v
2. uniform scale the entire object by factor $\sqrt[3]{f_{\text {CONST }} / v}$ around its barycenter

Inequality positional constraints:

example

- "please don't sink below the ground" assuming the ground is the plane $Y=0$

$$
\mathrm{C}\left(\mathbf{p}_{\mathrm{a}}\right) \Leftrightarrow \mathbf{p}_{\mathrm{a}} \cdot y \geq 0
$$

- Trivial to impose:
just set the y to 0 , if it is <0

Inequality positional constraints:

example

- "this particle must stay above
this fixed (and arbitrary) plane"
- For example, because the plane is a solid unmovable slab
- The plane is given by a point on it \mathbf{p}_{q} and its normal \hat{n}_{q}

$$
\mathrm{C}\left(\mathbf{p}_{\mathrm{a}}\right) \Leftrightarrow\left(\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{q}}\right) \cdot \hat{n}_{q} \geq 0
$$

Inequality positional constraints:

example

- These two particles must be at least $k_{\text {CONST }}$ apart

$$
\mathcal{C}\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}\right) \Leftrightarrow\left\|\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{b}}\right\| \geq k_{\text {CONST }}
$$

- For example, because they are the centers of two rigid spheres and $k_{\text {CONST }}$ is the sum of their radii
- part of collision handling (see next lecture)

157

Inequality positional constraints:

example

- These two particles must be at most $k_{\text {CONST }}$ apart

$$
\mathcal{C}\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}\right) \Leftrightarrow\left\|\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{b}}\right\| \leq k_{\text {CONST }}
$$

- For example, because they are tied by an inextensible rope that has length $k_{\text {CONST }}$ (but can fold)

\mathbf{p}_{a}

Inequality positional constraints:

example

- Angle constraints, e.g. $\boldsymbol{\alpha}<\boldsymbol{\alpha}_{\text {max }}$ with $\boldsymbol{\alpha}$ the angle between $\mathbf{p}_{a}, \mathbf{p}_{b}$ and $\mathbf{p}_{b}, \mathbf{p}_{c}$
- e.g., on joints: «elbows cannot bend backward»
- (a constraint between three particles!)

159

Enforcing one positional constraint

 (in general terms)- Inequality constraint:

1. Test: does the inequality already hold?
2. If so: do nothing
3. If not: enforce it as an equality (=) instead (see below!)

- Equality constraint:
- All involved particles must be displaced from that current position, so that it now holds
- There can be infinite ways to achieve this! Question: Which one to pick?

Enforcing one equality constraint:

(assuming for now all particles have same mass)

- Answer:
minimize the sum of squared displacements (with respect to current position)
- For each kind of constraint, we need to find the minimizer analytically
("analytically" = in closed form = "with formulas"
= "solving a simple math problem on paper")
- That's what we did for the equality constraint

Enforcing one equality constraint

(assuming for now all particles have same mass)

- We want to enforce a constraint \mathcal{C} on particles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$
currently in positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}} \ldots$

$$
\mathcal{C}:\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots\right) \rightarrow\{\text { true }, \text { false }\}
$$

- We must apply the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}$ that are the

$$
\begin{aligned}
& \underset{d_{\mathrm{a}}}{\operatorname{argmin}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}, \ldots \\
& \text { such that } \mathcal{C}\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{d_{\mathrm{a}}}, \mathbf{p}_{\mathrm{b}}+\overrightarrow{d_{\mathrm{b}}}, \mathbf{p}_{\mathrm{c}}+\overrightarrow{d_{\mathrm{c}}}, \ldots\right)
\end{aligned}
$$

Enforcing one equality constraint (in general)

- We want to enforce a constraint \mathcal{C} on particles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$ in positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}$ and with masses $m_{\mathrm{a}}, m_{\mathrm{b}}, m_{\mathrm{c}}, \ldots$

$$
\mathcal{C}:\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots\right) \rightarrow\{\text { true }, \text { false }\}
$$

- We must apply the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}$ found by:

$$
\begin{aligned}
& \underset{d_{\mathrm{a}}}{\operatorname{argmin}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{\vec{d}_{\mathrm{c}}, \ldots} \\
& \text { such that } \\
& \mathcal{C}\left(m_{\mathrm{a}}\left\|\overrightarrow{\mathbf{p}_{\mathrm{a}}}+\overrightarrow{d_{\mathrm{a}}}\right\|^{2}+m_{\mathrm{b}}\left\|\overrightarrow{\mathbf{d}_{\mathrm{b}}}+\overrightarrow{d_{\mathrm{b}}}\right\|^{2}+m_{\mathrm{c}}\left\|\overrightarrow{d_{\mathrm{c}}}\right\|^{2}+\cdots\right) \\
& \left.\mathbf{p}_{\mathrm{c}}+\overrightarrow{d_{\mathrm{c}}}, \ldots\right)
\end{aligned}
$$

Example: solve the

"please don't sink under this plane"

$$
\mathrm{C}\left(\mathbf{p}_{\mathrm{a}}\right) \Leftrightarrow\left(\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{q}}\right) \cdot \hat{n}_{q} \geq 0
$$

- We need to find displacement $\overrightarrow{d_{\mathrm{a}}}$ as:

$$
\underset{\overrightarrow{d_{\mathrm{a}}}}{\operatorname{argmin}}\left(m_{\mathrm{a}}\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}\right)
$$

such that $\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{d_{\mathrm{a}}}-\mathbf{p}_{\mathrm{q}}\right) \cdot \hat{n}_{\mathrm{q}} \geq 0$

- And the solution (in closed form) is...

3D Video Games

```
In pseudocode
    Vector3 pa; // curr positions of a
    float ma; // mass (no effect here)
    Vector3 pq; // point on the plane
    Vector3 nq; // normal of the plane (unit)
    Vector3 v = pa - pq;
    float currDist = Vector3.dot( v , n );
    if (currDist < 0.0)
        pa -= currDist * n; // just project!
    else {} // constrain ok, nothing to do
```


Example: the equidistance constraint (for unequal masses)

$$
\mathcal{C}\left(\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}\right) \Leftrightarrow\left\|\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{b}}\right\|=k_{\text {CONST }}
$$

- With partcle masses $m_{\mathrm{a}}, m_{\mathrm{b}}$
- We need to the displacements $\overrightarrow{\mathrm{d}_{\mathrm{a}}}, \overrightarrow{\mathrm{d}_{\mathrm{b}}}$ found by minimizing:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{\mathrm{~b}_{\mathrm{b}}}}{\operatorname{argmin}}\left(m_{\mathrm{a}}\left\|\overrightarrow{\mathrm{~d}_{\mathrm{a}}}\right\|^{2}+m_{\mathrm{b}}\left\|\overrightarrow{\mathrm{~d}_{\mathrm{b}}}\right\|^{2}\right) \\
& \text { such that }\left\|\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{\mathrm{d}_{\mathrm{a}}}\right)-\left(\overrightarrow{\mathbf{p}_{\mathrm{b}}}+\overrightarrow{\mathrm{d}_{\mathrm{b}}}\right)\right\|=k_{\text {CONST }}
\end{aligned}
$$

- And the solution (in closed form) is...

```
Example: the equidistance constraint
(for unequal masses)
    Vector3 pa, pb; // curr positions of a,b
    float ma, mb; // masses of a,b
    float d; // distance (to enforce)
    Vector3 v = pa - pb;
    float currDist = v.length;
    v /= currDist; // normalization of v
    float delta = currDist - d ;
    /* solutions of the minimization: */
    pa += ( mb/(ma+mb) * delta) * v;
    pb -= ( ma/(ma+mb) * delta) * v;
```


Observe and verify

- The way we have seen to impose...
- The "fixed position" constraint
- The "equidistance" constraint
- The "stay above ground" constraint
- Etc.
are the ones that minimizes the mass-weighted squared displacements of the particles
- (the mass is not always relevant)

Position Based Dynamics (PBD) summary

- A general approach for computing dynamics
- Ingredients:

1. Use Verlet integration on particles

- their velocities are implicit
- changes in positions induce changes in velocities

2. Implement positional constraints on particles (e.g., equidistance constraint) to model things like:

- Rigid bodies
(their rotational speed is an emerging feature!)
- Articulated / non rigid bodies
- Basic collision detection

Not forces:

summary

- We have seen many kinds of real-world forces that are modelled by things that aren't "forces" in our simulation:
- Frictions
- In reality: a ("dissipative") force contrasting motion
- Can be simulated by: drag / velocity damp
- Violent sudden events, such as impacts
- In reality: a very strong force that is sustained for a very short time $\ll d t$
- E.g.: hitting a ball with a mace
- Must be simulated by: impulses
- Resistance forces
- In reality: a force that contrast and nullifies an external force (e.g. gravity)
- E.g.: what prevents your computer from falling through the table RN
- Can be simulated by: positional constraints

