
3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 

lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Changing the value of dt in Verlet
(whenever it’s not constant)

Problem:
if 𝑑𝑡 now changes to a new 𝑑𝑡′

then, all 𝐩௢௟ௗ must be updated to some 𝐩௢௟ௗ
ᇱ

Find 𝐩௢௟ௗ
ᇱ : 𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ
ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ

ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

current velocity 𝑣⃗
and position 𝐩௡௢௪

must not change

135

136

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 2

 We want to multiply 𝑣⃗ a factor 𝑐ୈ୅୑୔

 before applying accelerations

 We can do that using a more general formula for 𝐩௡௘௫௧

Velocity damping in Verlet

𝐩௡௘௫௧ = 1 + 𝑐ୈ୅୑୔ ⋅ 𝐩௡௢௪ − 𝑐ୢୟ୫୮ ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

e.g. 0.98
obtained as
(1-𝑑𝑡·𝑐ୈୖ୅ୋ)

 Velocity at next frame: 𝑣⃗ = (𝐩௡௘௫௧ − 𝐩௡௢௪)/𝑑𝑡

implicit

Velocity damping in Verlet
(geometric interpretation)

𝐩௡௘௫௧ = 1.98 ⋅ 𝐩௡௢௪ − 0.98 ⋅ 𝐩௢௟ௗ𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 2)

Equivalently,
𝐩௡௘௫௧ is an extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝑣⃗

𝑣⃗

Equivalently,
𝐩௡௘௫௧ is a different extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 1.98)

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝑣⃗

0.98𝑣⃗

a bit shorter

138

139

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 3

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

௔ ௕

௕

௔

௔ ௕

௕

௔

I want that…

Enforce equidistance constraints
(assuming equal masses for now)

if 𝐩௔ − 𝐩௕ < 𝑑

if 𝐩௔ − 𝐩௕ > 𝑑 ௕

௔

௕
௔

140

141

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 4

Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

assuming equal mass, we move each particle half the way
(see later for the more general case)

Compare:
equidistance constraints vs. springs

 Similar
 they both mean:

these 2 particles “want to be” at this distance (not more, not less)
 but different

 spring:
 applied during

force evaluation step
 affects forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affects

positions
 models a rigid rod

between the two particles
 of a given length

 sometimes called
a “HARD” constraint

 A physic engine can combine them in one object!

some constant scalar parameter 𝐷

142

143

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 5

Enforcing sets of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: just enforce them in cascade
(similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
…but at most for N times! (reminder: our simulation is soft real-time)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing a set of constraints
one after the other (in cascade)

 The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step

 Notes about convergence:
 needed iterations (typically) few: e.g. 1 ~ 10 (efficient!).
 if convergence not reached within a given number of steps:

never mind, next frames will fix it (it’s fairly robust)
 (it is never reached, if constraints are contradictory)
 Optimization (to reduce the number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi solvers) are possible
 they have a worse convergence in practice

(they require more iterations), but each iteration is faster

144

145

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 6

Compounds of particles
disguised as rigid bodies

PARTICLEPARTICLE

PARTICLEPARTICLE

PARTICLEPARTICLE

We can combine equidistance
constraints to obtain rigid objects!
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box in 2D?
(rigid object)
A configuration of:
• 4 particles
• 6 equidistance constraints

146

147

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 7

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• had rotated
• gained angular velocity

(will keep rotating by
inertia)

even the system does not
(explicitly) handle rotations
or
angular velocities

(works in 3D as well!)

148

149

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 8

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

Positional constraint
(in general terms)

 A predicate defined on the position(s) of a
number of particles (usually, a small number: 1 - 4)

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 For example, the equidistance constraints is
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b = 𝑘஼ைேௌ்

 They can be an equality (=) or an inequality (≤ or ≥)

151

152

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 9

Equality positional constraint:
examples

 Equidistance constraint (the one we have seen):
«these N particles must stay at distance k»
 E.g: because they are linked my a metal rod of length k

 Fixed positions:
«this particle must stay in position 𝐩ୟ »
 the particle is “pinned” in position
 trivial to impose, but still useful!

 Coplanarity / collinearity:
«these N particles must stay on a line / on a plane»

Equality positional constraint:
other examples

 Volume preservation:
“The volume delimited by the squishy ballon
defined by these particles is a constant 𝑘େ୓୒ୗ୘ ”
(e.g. because it’s filled with water)

 How to impose it:
1. Estimate current total volume 𝑣

2. uniform scale the entire object by factor 𝑓େ୓୒ୗ୘ /𝑣
య

around its barycenter

153

154

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 10

Inequality positional constraints:
example

 “please don’t sink below the ground”
assuming the ground is the plane Y = 0

C 𝐩ୟ ⇔ 𝐩ୟ. 𝑦 ≥ 0

 Trivial to impose:
just set the 𝑦 to 0, if it is < 0

Inequality positional constraints:
example

 “this particle must stay above
this fixed (and arbitrary) plane”
 For example, because the plane is a solid unmovable slab
 The plane is given by a point on it 𝐩୯ and its normal 𝑛ො௤

C(𝐩ୟ) ⇔ 𝐩ୟ − 𝐩୯ ȉ 𝑛ො௤ ≥ 0

155

156

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 11

Inequality positional constraints:
example

 These two particles must be at least 𝑘஼ைேௌ் apart
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b

≥ 𝑘஼ைேௌ்

 For example, because they are the centers of two rigid
spheres and 𝑘஼ைேௌ் is the sum of their radii

 part of collision handling (see next lecture)

𝐩௕𝐩௔𝐩௕𝐩௔

Inequality positional constraints:
example

 These two particles must be at most 𝑘஼ைேௌ் apart
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b

≤ 𝑘஼ைேௌ்

 For example, because they are tied by an inextensible
rope that has length 𝑘஼ைேௌ் (but can fold)

𝐩௕𝐩௔

We can be this
far apart (at most)

𝐩௕𝐩௔

or closer!

157

158

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 12

Inequality positional constraints:
example

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶

with 𝛂 the angle between 𝐩௔ , 𝐩௕ and 𝐩௕, 𝐩௖

 e.g., on joints: «elbows cannot bend backward»
 (a constraint between three particles!)

𝐩௕

𝐩௖

𝐩௔

Enforcing one positional constraint
(in general terms)

 Inequality constraint:
1. Test: does the inequality already hold?
2. If so: do nothing
3. If not: enforce it as an equality (=) instead (see below!)

 Equality constraint:
 All involved particles must be displaced

from that current position, so that it now holds
 There can be infinite ways to achieve this!

Question: Which one to pick?

159

160

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 13

Enforcing one equality constraint:
(assuming for now all particles have same mass)

 Answer:
minimize the sum of squared displacements
(with respect to current position)

 For each kind of constraint, we need to find the
minimizer analytically
(“analytically” = in closed form = “with formulas”
= “solving a simple math problem on paper”)
 That’s what we did for the equality constraint

Enforcing one equality constraint
(assuming for now all particles have same mass)

 We want to enforce a constraint 𝒞 on particles a , b , c, …
currently in positions 𝐩a ,

𝐩b ,
𝐩c

…

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ that are the

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

𝑑ୟ

ଶ
+ 𝑑ୠ

ଶ
+ 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

161

162

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 14

Enforcing one equality constraint
(in general)

 We want to enforce a constraint 𝒞 on particles a , b , c, …
in positions 𝐩a ,

𝐩b ,
𝐩c

and with masses 𝑚a, 𝑚b, 𝑚c
, …

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ found by:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+mb 𝑑ୠ

ଶ
+mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

Example: solve the
“please don’t sink under this plane”

C(𝐩ୟ) ⇔ 𝐩ୟ − 𝐩୯ ȉ 𝑛ො௤ ≥ 0

 We need to find displacement 𝑑ୟ as:

argmin
ௗ౗

𝑚ୟ 𝑑ୟ

ଶ

such that 𝐩ୟ + 𝑑ୟ − 𝐩୯ ȉ 𝑛ො୯ ≥ 0

 And the solution (in closed form) is…

a point on plane
(const)

plane normal
(const)

163

164

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 15

In pseudocode

Vector3 pa; // curr positions of a
float ma; // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain ok, nothing to do

Example: the equidistance constraint
(for unequal masses)

𝒞 𝐩a
, 𝐩b

⇔ 𝐩a − 𝐩b = 𝑘஼ைேௌ்

 With partcle masses ma , mb

 We need to the displacements dୟ , dୠ
found by minimizing:

argmin
ௗ౗ , ௗౘ

ma dୟ

ଶ
+ mb dୠ

ଶ

such that pa + dୟ − pb + dୠ = 𝑘஼ைேௌ்

 And the solution (in closed form) is…

165

166

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 16

Example: the equidistance constraint
(for unequal masses)
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

Observe and verify

 The way we have seen to impose…
 The “fixed position” constraint
 The “equidistance” constraint
 The “stay above ground” constraint
 Etc.

are the ones that minimizes the mass-weighted
squared displacements of the particles
 (the mass is not always relevant)

167

168

3D Video Games
05: Game Physics - Dynamics 3

2024-04-11

Marco Tarini
Università degli studi di Milano 17

Position Based Dynamics (PBD)
summary

 A general approach for computing dynamics
 Ingredients:

1. Use Verlet integration on particles
 their velocities are implicit
 changes in positions induce changes in velocities

2. Implement positional constraints on particles
(e.g., equidistance constraint) to model things like:

 Rigid bodies
(their rotational speed is an emerging feature!)

 Articulated / non rigid bodies
 Basic collision detection

Not forces:
summary

 We have seen many kinds of real-world forces that are
modelled by things that aren’t “forces” in our simulation:
 Frictions

 In reality: a (“dissipative”) force contrasting motion
 Can be simulated by: drag / velocity damp

 Violent sudden events, such as impacts
 In reality: a very strong force that is sustained for a very short time << dt
 E.g.: hitting a ball with a mace
 Must be simulated by: impulses

 Resistance forces
 In reality: a force that contrast and nullifies an external force (e.g. gravity)
 E.g.: what prevents your computer from falling through the table RN
 Can be simulated by: positional constraints

. . .

𝑓 = function(𝐩, . . .)
. . .

not in here

169

170

