
3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Rigid-bodies as compounds of
particles + constraints

 Interesting/rich/useful set of “emerging behaviors”
(they just automatically happen) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence
of
constraints
disallowing
compene-
tration

you don’t
need to
compute
or store
these

171

172

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 2

Rigid-body as particles + constraints:
challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted
 mainly: the transform (position + orientation) of the “rigid

body” is needed to render the associated meshes
 or: velocity, angular velocity may be needed for…

gameplay reasons (e.g. damage), graphics (motion blur), etc

How to extract…

Particle Compound Virutal Rigid Body

p0

p1
p2

p3

masses m0…mN
initial positions r0…rN

positions p0…pN
velocities v0…vN

mass m
barycenter b (local space origin)
moment of inertia I (matrix)

position p (of barycenter)
velocity v (linear)
rotation R (i.e. orientation)
angular velocity a

?

ST
AT

IC
(in

iti
al

iza
tio

n)
DY

N
AM

IC
(d

ur
in

g
si

m
ul

at
io

n)

ST
AT

IC
DY

N
AM

IC

?

173

175

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 3

For example:

masses m0…mN

positions p0…pN

velocities v0…vN

B

Particle Compound Rigid Body

m = mi

𝐩 =
1

m
 mi

𝐩i

𝐯 =
1

m
 mi

𝐯i

ST
AT

IC
DY

N
AM

IC

A mass m

position p (of barycenter)

velocity v (linear)

Questions (beyond this course):
How to find / update the…
• rotation
• angular velocity
• moment of inertia matrix
of the rigid body?

C

B:

A:

C:

Scene-graph interpretation:
from this

world

Rigid object space
(= world space)

translation 0
rotation 0

translation p0 p3

particles

Particle dynamics
updates

these

176

177

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 4

Scene-graph interpretation:
to this (every frame!)

world

rigid-body space
(origin in b)

translation p
rotation R

translation r0- b r3- b
Now, here you can attach:
• the detailed 3D mesh
• a collision proxy
• a cameras
• sound emitters, etc!

particles
fixed

(no need to
update them)

Summary:
two ways to handle rigid-bodies

 As a compund of particles, with PBD
 Bonus: you can also handle…

deformable bodies, articulated bodies
 Bonus: easy to define many useful constraints
 Cost: need to extract implicit status of the rigid body
 Cost: mass concentrated at particles

 With Rigid Bodies dynamics
 With explicit rotation / angular velocity

 Or, mixed systems:
 Convert (dynamically) between the two

178

179

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 5

3D video games

notes on the sand-box
coding done in class

Marco Tarini

Objective of this sandbox

Implement a PBD system
(particle based, with Verlet integration) on Unity
 Plan:

 we will NOT enable the default Unity physics system
 instead, implement our ad-hoc physics “by hand”, by scripting
 note: in a normal project, there’s no good reason to do that!

 How to NOT enable physics in Unity:
 Just don’t add (or remove), to any GameObject,

any “RigidBody” component (implements dynamics) and
any “Collider” component (implements collision handling)

 we will still use the Graphics engine of Unity
 scene-graph support: GameObjects, their Transforms

181

182

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 6

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game-Object

 It is a C# class, with predefined methods used by the
rest of Unity engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called at fixed interval,

just before the hard-wired physics step
 Update() – called before rendering this object

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Our Particles and their behavior

 Our particle is a game-object
 an element of the scene graph (1 level)
 It’s rendered as a small sphere

 Its associated behavior class includes the fields:
 P_now , p_old (points): for Verlet dynamics

(note: “transform.position” is the current position used by
the rendering / the GUI)

 mass (scalar): constant
(“public”, so it is exposed in the GUI)

 drag (another scalar): % of speed lost per second (same)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

183

184

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 7

Implementation detail:
p_now VS transform.position
 For each particle, the current position

is already kept by unity as its transform.position :
 Reminder: it’s the translation/position component of the

global transformation
 (BTW it’s not really a field, but it pretends to be - C# property)
 Reminder: physical simulation always acts in world space
 That value used by the rendering engine, the GUI, etc.

 For clarity, we use a field p_now instead
but keep it in sync with transform.position
 at the beginning of each integration step:

p_now ← transform.position
 at the end:

transform.position ← p_now

FixedUpdate method of particles

 Basic Verlet integration occurs here
 Includes addition of any force

that depends only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 ground collision (“please stay above ground”)
 box collision (“please stay inside this 10x10 box”)

 Includes velocity dumping
 see dump computation in prev slides

185

188

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 8

Adding “sticks”

 Sticks are GameObjects representing rigid rods
connecting two particles

 Rendering (just for the looks):
 A stick is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (so, in the Update() method)

its (global) transformation is computed anew,
so that the cylinder is scaled, rotated, and translated
to make it graphically connect the two particles

 This new transformation replaces the old at every frame
 (therefore, it doesn't matter where we place them in the

scene: they will teleport to the right location at each frame)

Adding “sticks”

 Fields:
 References to connected particles A and B

This is a public field: so we will set them in the Unity GUI !
 Rest length (scalar)

This is automatically computed on Start
as the initial distance between particles A and B

 Methods:
 FixedUpdate: enforces the positional constraints, acting on

the position (transform.position) of the two particles
 See slides for how this is to be computed from their current

positions

189

190

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 9

Adding a visible barycenter
to the virtual object

 BaricenterOf:
A “behavior” that just teleports its object (a white sphere) in
the barycenter of a given compound of particles.

 Fields:
 References to all particles of the compoundnd B

 Methods:
 Update: computes the current barycenter and

teleport the white ball there

 note:
 we can get away with the rotation because the sphere is rotationally

symmetric
 How would we compute the “rotation”

Sand-box project: results.

 Combining multiple particles and sticks,
we construct meta-objects such as…
 Rigid objects
 Ropes, pendulums

 Rigid objects exhibit a plausible…
 Angular velocity
 Angular momentum
 Correct barycenter around which to rotate

(try assigning a different mass to a particle)
 Stability (does the barycenter “fall inside the basis”?)
 Reaction of impacts with the ground / walls (bounces)

…without having coded any of that

191

192

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 10

A limitation of our implementation
(can be fixed later)

 We are relying on Unity hard-coded mechanism to run the
FixedUpdates (and Start) methods for all scene objects
 Therefore, we have no control on the order in which they are run

 In particular, the positional constraints of the sticks are run
 only once per physics step
 either before, or after the Verlet integration step

 In theory, we want to enforce them
 just after swapping current and old positions
 and multiple times, or until convergence
 together with the collision of particles with ground etc

 Still, the simulation works with only small inconsistencies

Future work:
Idea for how to progress 1/3

 Current problem:
 Each positional constraint is enforced only once per frame

 Fix it: make a global “behavior”
 Associated to the root of the scene
 instead of relying on Unity to execute fixed updates of

every object, use only the fixed update of the global
behavior, making a sequence of loops:
 1st loop: execute Verlet integration (loop over all particles)
 2nd loop: enforce all positional constraints

(loop over all particle and over all rods in the scene)
 Repeat 2nd loop multiple times

193

200

3D Video Games
05: Game Physics - Dynamics 4

2024-04-15

Marco Tarini
Università degli studi di Milano 11

Future work:
Idea for how to progress: 2/3

 Add springs
 How to: add spring object (similar to rods)

 1. Rest length: computed at start (like for rods)
 2. Particles at the extremes: a public field, just as for rods
 3. Elastic constant k: a (public) scalar parameters
 4. Write fixed update(): add to forces of the two particles
 5. Profit! Add spring to your compound meta-objects

 Caveats:
 Unless you use a global script, you will need to

set forces to 0 (InitForces method) at the end of the
FixedUpdate (not the beginning) and at initialization (why?)

Future work:
Idea for how to progress: 3/3
 Floor is lava (or water)

 Instead of having a hard-granite floor, make it liquid

 How to:
 1. Remove the “stay above ground” constraint
 2. Add buoyancy (ita: forza di Archimede) to the particles

 (as an approximation, you don’t need it for the rods or the
rigid objects: just the particles)

 Reminder: buoyancy is an upward force with a magnitude = mass of
the submerged volume if it was made of water

 Math task: compute the volume of the part of sphere (of a given
radius) which has y > 0

 3. Profit! See how object float, or sink
 (and which parts stays up if they float) – depends on masses and size

201

202

