
3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Collision handling!

 The other half of physical engine

2

3

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 2

Collision Handling:
a preliminary consideration
 Two types of objects in a game:

 static
 Never moves (speed = 0)
 Part of the setting, background
 Affects other objects,

not affected by other objects
 non-static

 Can move around
(for any reason)

 Two types of collisions:
 one-way :

a non-static object with
a static object

 two-ways :
a non-static object
with a non-static object

M
ovable

Static

One
Way

Static

Two
Ways

One
Way

Movable

Collision Handling:
a preliminary consideration
By labelling every object as either static or movable,
we reduce the needed computation considerably!

E.g., if 50% static, 50% movable then…
 1/4 of the potential collisions cease to exists (*).

Of the rest:
 2/3 are one ways (easier to handle)
 Only 1/3 are two-ways

(*) No collision handling for Static VS static:
That’s not just an “optimization”, but a feature:
 Wall models can compenetrate, to build a house (no collision!)
 Buildings can sink into the terrain (no collision!)
 Etc.

6

7

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 3

Collision Handling:
two tasks

 Collision detection
 find out when they occur

 Collision response
 compute their effects

next topic

Collision response

 Enforce non-penetration
 objects must be placed in valid positions
 (when to: always)

 Impacts
 with impulses (bounces)
 (when to: collision occurred now, but not in the pref frame)

 Frictions between the two objects
 energy dissipation
 (when to: from 2° consecutive step of collision)

 Ad-hoc effects
 breaking objects, gameplay effects (HP loss?), etc (by scripts)
 (when to - if at all: entirely gameplay dependent)

8

9

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 4

Enforcing non-penetration

 Invalid position?
 strategy 1: revert to last valid pos (easy to do, not ideal)

 strategy 2: project to closest valid pos (necessary, in PBD)

not valid closest
valid pos

Enforcing non-penetration

 In PBD:
just another positional constraint
 bonus: velocity updates

(similar to inelastic impacts)
 but we will need to explicitly compute

impacts if we want a better control
of the behavior (see later)

 How to enforce this constraint:
 two-ways :

displace both of them,
minimizing the summed squared displacements × the mass

 one-way :
only displace the one movable objects by the minimal amount
(equivalent to the above, when fixed object mass → ∞)

Note: asymmetrical
constraint (> not =)

A practical problem:
the existence of the
constraint it is not known
a-priori.

10

11

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 5

Contact friction

 Apply it on prolonged contact
 collision with an object that was colliding last frame too

 Affects component of velocity parallel
to contact plane

 Can be implemented with:
(1) forces, or (2) velocity damping

 Forces:
 Opposite to current velocity,

projected on contact plane (note: I need its normal)
 Magnitude: proportional to the speed

Resolving the impacts

 Sudden velocity change
 resolve the impact = determine the new velocities �⃗�
 equivalently, determine the impulses 𝚤 =(�⃗� − �⃗�) 𝑚

 All impacts preserve total momentum 𝑚 �⃗�
 Always, no matter what

 To resolve the impact,
we need further assumptions,
different for each type of the impact:
 elastic
 inelastic

so, it’s the effect
of an impulse

a vector
(ita: «quantità di moto»)

And, for rigid body dynamics:
also new angular velocity

we’ll write formulas for whichever is easier to write

12

13

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 6

Different type of impacts

(completely)

elastic
impact

(completely)

inelastic
impact

“Bounciness” = 0.0

…

“Bounciness” = 0.5

…

“Bounciness” (or impact elasticity)

“Bounciness” = 1.0

14

15

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 7

“Bounciness” (or impact elasticity)
[notes]

 Elastic impact: no energy lost
 How is energy lost, in reality? (examples)
 objects get damaged, heat is produced, sounds are emitted

 “Bounciness”:
a (made-up) property of physical objects in games
 It models the behavior of the object under impacts,

as a mix between the two “pure” behaviors above
 Associated by designers to all virtual objects in the game

 Note: that’s not how real stuff works!
 not even for the two extremes
 it’s an approximation (especially for mixed bounciness)
 Remember: we are just aiming at plausibility

What about this impact?

 Practical solution:
adopt some formula between the
bounciness values associated to the two objects
 For example: avg, min, max
 It’s a choice of the game engine
 (can be hard-wired in the physics engine,

or exposed to the users)

“Bounciness” = ???

16

18

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 8

The assumptions for
the two “pure” types of impact

Assumptions

…and the total
momentum is the
same as before

The impulse is in
the direction of the
impact normal

After the impact,
the total energy is
the same as before

Elastic

…and the total
momentum is the
same as before

After the impact,
the two bodies share the same velocityInelastic

Remember that the impulse (force x time) is the
(instantaneous) change of momentum!
So, this is a way to say that the total impulse is zero
𝑖 + 𝑖 = 0
that is,
𝑖 = −𝑖

aka the 3rd law of dynamics.

The assumptions for
the two “pure” types of impact

 (completely) elastic impacts:

 preservation of total kinetic energy 𝟏
𝟐

𝑚 �⃗�

 impulse direction = the normal of impact point

 (completely) inelastic impacts:
 after the impact, the two bodies have the same velocity
 (as if the impact momentarily glued them together)

(they will still move apart in subsequent frames)

 mixed cases:
 solve for both cases, interpolate resulting velocities
 the weight of the interpolation = the “bounciness”

a scalar

19

20

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 9

Momentum:
(𝑚 + 𝑚) �⃗� ,

(completely) inelastic impact

BEFORE: AFTER:

 𝑚

�⃗�

 𝑚

�⃗�

�⃗� , = ?
𝑚 + 𝑚

Momentum:
 𝑚 �⃗� + 𝑚 �⃗�

the only unknown, so …

(completely) elastic impact: 1D case

BEFORE: AFTER:

𝑣 =?
 𝑚 𝑚 𝑚 𝑚

𝑣 𝑣 𝑣 =?

signed
scalar

momentum:
𝑚 𝑣 + 𝑚 𝑣

momentum:
𝑚 𝑣 + 𝑚 𝑣

energy:
𝑚 𝑣 + 𝑚 𝑣

energy:
𝑚 𝑣 + 𝑚 𝑣

21

22

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 10

(completely) elastic impact: 1D case

momentum
conservation:

𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 + 𝑚 𝑣

𝑖 = −𝑖

energy
conservation:

⟹ 𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 +

+ 𝑚 𝑣 +

new velocities are
defined by
the impulses: 𝑣 = 𝑣 +

𝑖

𝑚

 𝑣 = 𝑣 +
 𝑖
𝑚

⟹ 𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 + + 2 𝑣 𝑖 + 𝑚 𝑣 + + 2 𝑣 𝑖

⟹ 0 =
𝑖

𝑚
+ 2 𝑣 𝑖 +

𝑖

𝑚
+ 2 𝑣 𝑖

signed
scalars

(it’s just the 3rd law of dynamics)

(completely) elastic impact: 1D case

substituting:
𝑖

𝑚
 + 2 𝑣 𝑖 +

𝑖

𝑚
 − 2 𝑣 𝑖 = 0

𝑖
𝑚 + 𝑚

𝑚 𝑚
 + 𝑖 2 𝑣 − 𝑣 = 0

𝑖 =
2 𝑚 𝑚

𝑚 + 𝑚
𝑣 − 𝑣 𝑖 = 𝑖 = 0

solution 1 solution 2

𝑖 𝑖

𝑚 + 𝑚

𝑚 𝑚
 + 2 𝑣 − 𝑣 = 0

before the impact after the impact

26

27

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 11

𝑛𝑛

(completely) elastic impact: 3D case

BEFORE: AFTER:

�⃗� = ?

 𝑚
 𝑚

momentum:
𝑚 �⃗� + 𝑚 �⃗�

momentum:
𝑚 �⃗� + 𝑚 �⃗�

energy:
𝑚 �⃗� + 𝑚 �⃗�

energy:
𝑚 �⃗� + 𝑚 �⃗�

�⃗� �⃗�
�⃗� = ?

 𝑚
 𝑚

(completely) elastic impact: 3D case

 Additional assumption:
 Ǝ impact plane, with normal 𝑛

 o, in 2D: impact line

 impulses must be orthogonal to this plane 𝚤 , = 𝑖 , 𝑛

 To solve the impact
 find scalar velocities 𝑣 , as the component of

vector velocities �⃗� , along 𝑛 : 𝑣 , = �⃗� , 𝑛

 find scalar impulses 𝑖 , (use the 1D case)
 find vector impulses 𝚤 , = 𝑖 , 𝑛

 apply them to vector velocities

vector
impulses

scalar
impulses,

pos. or neg.
(the unkonwns)

we need
this info!

28

29

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 12

Remember this geometric subproblem?

 Solution in 3 steps:
(1) 𝑠 ← �⃗� 𝑛

(2) �⃗� ← 𝑠 𝑛

(3) �⃗� ← �⃗� − �⃗� (or: �⃗� ← �⃗� × �⃗� × �⃗�)

 Useful because:
 only �⃗� is affected by elastic impacts with the plane
 only �⃗� is affected by frictions with the plane (e.g.: drag)

 𝑠 is used to solve elastic impacts (use 1D case)

�⃗�

𝑛 �⃗�

�⃗�

 Given: velocity vector �⃗�
impact plane normal 𝑛 ,

split �⃗� in the vector sum
�⃗� = �⃗� + �⃗� with
 �⃗� orthogonal to the plane (= parallel to 𝑛)
 �⃗� parallel to the plane (= orthogonal to 𝑛)

with 𝑠 a scalar
(the signed “speed”)

 Completely elastic case (1D):
 the two velocities just swap

 Completely elastic case (3D):
 The two velocity components

orthogonal to the impact plane
swap

 Completely inelastic case (3D):
 the new velocity of both particles

is the (vector) average of their pre-impact velocities

Special case: (exercise: verify!)

Equal masses

30

32

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 13

 Completely elastic case (1D):
 𝑣 just flips

 Completely elastic case (3D):
 The component of 𝑣 orthogonal

to impact plane just flips

 Completely inelastic case (3D):
 B stops dead (�⃗�′ = 0)

Special case: (exercise: verify!)

one-way collision
(A is static)

𝑚 ⟶ ∞
&

�⃗� = 0

Notes on

impacts between rigid bodies

 We only have seen impacts between particles
 i.e., we disregarded angular velocities
 when rigid bodies are implicitly implemented as

particles + distance constraints, this is all we need to do!
 Effect of elastic / inelastic impacts on angular velocities

will be an (approximated) emerging behavior
 Impacts between explicit rigid bodies require to explicitly

compute the two post-impact angular velocities too
 Different math, stemming form the same principles:
 Angular momentum: it is always preserved, no matter what
 Anelastic impact: post-impact angular velocities must also match
 Elastic impact: kinetic rotational energy must also be preserved
 Bounciness ∈ [0,1]: interpolate angular velocities of the above

that is,
considering
angular velocities too

33

34

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 14

Collision Handling:
two tasks

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

next topic

YES

Produce:
 a hit positions
 a hit normal

 orientation of the
impacted place

Collision?
«do any two things

overlap?»

NO

35

36

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 15

From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 a hit positions
 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

Collision detection

 The usual concern: efficiency
 Observation:
 almost 100% of the object pairs,

almost 100% of the times,
do NOT collide.

 for efficiency,
the «no-collision» case needs to be optimized

 «early reject» of the collision test

37

38

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 16

Collision detection

 Efficiency issues:

a)how to test between object pairs:
 In an efficient way

b)how to avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

Geometric proxies

39

40

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 17

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, to be used in its place

 can be a much cruder approx.
than the 3D model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision proxy)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

Geometric proxies:
not only for collision detection, but also:

 physic engine
 extract data for collision response
 extract barycenter position

& moment-of-inertia matrix of rigid bodies
assuming uniform density (Ita.: peso specifico)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways to do that)

 3D sounds
 sound absorption in 3D sound propagation

Basically, for any other task except rendering:
internally, objects are their proxies.

41

42

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 18

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject»
optimization

An approximation
of the
collision detection

Geometric proxies: shapes

 Spheres
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Boxes

 aka AABB
 Generic Boxes
 Discrete Oriented Polytopes

 aka DOP
 Ellipsoids

 axis aligned or not
 Cylinders
 Convex polyhedrons
 Non-convex polyhedrons

 Meshes
 …

43

44

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 19

choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store them
 Behavior under transformations
 the ones we plan to use, e.g., isometries

 How good is the geometric approximation
 for the objects we will use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies, points, rays…
 how { easy to compute | good } is the collision data?

by algorithms

assets!
by artists

Geometric proxies:
A sphere

 easy to compute as a boundary
 only the approximatively optimal one

 tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐 , 𝑐 , 𝑐 , 𝑟)

 collision test: trivial (against spheres or other things)
 how? exercise – including collision data computation

 can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

 approximation quality:
 it depends on the object (as usual)
 often, quite poor:
 e.g.: a head? A character? A house? A sword?

45

46

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 20

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored as:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

Geometry proxies:
a half-space

 Trivial, but useful!
 e.g. for a flat terrain,
 or a wall
 or an invisible “force field” to limit the game level

(hated by players :-)

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛 , 𝑛 , 𝑛 , 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

n

47

48

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 21

Mini-exercise:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: n
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

n 𝐪 − 𝐩 =
n 𝐪 − n 𝐩 =
n 𝐪 + 𝑘 =

(𝑛 , 𝑛 , 𝑛 , 𝑘) (𝑞 , 𝑞 , 𝑞 , 1)

𝐪

𝐩
n

a 4D vector
representing the plane

𝑘 = −n 𝐩
(minus distance of plane from origin)

n

n

n

Which geometric proxy types
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection-test algorithms to be implemented :

quadratic with # of supported types

Type A

Type B

Type C

Type A Type B Type C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

49

50

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 22

Geometry proxies:
«AABB»

Axis Aligned Bounding Box
 Consists of three interval

𝑚𝑖𝑛 , 𝑚𝑎𝑥 × 𝑚𝑖𝑛 , 𝑚𝑎𝑥 × 𝑚𝑖𝑛 , 𝑚𝑎𝑥

 Concise to store
 Two 3D points: 𝑚𝑖𝑛 , 𝑚𝑖𝑛 , 𝑚𝑖𝑛 & 𝑚𝑎𝑥 , 𝑚𝑎𝑥 , 𝑚𝑎𝑥

 Easy to find the minimal AABB encapsulating a given set of points
 Easy to test for collision VS a point, or another AABB

 Exercise: how?
 Under transforms:

 if rotated, an AABB expands
 (but can be easily scaled / translated)

As the name implies,
typically used as BOUNDING
volume, not a collider

Cartesian product

new

«AABB» : 2D example
(Axis Aligned Bounding… Rectangle)

AABB

𝑥

𝑚𝑎𝑥

𝑚𝑎𝑥

𝑥

𝑚𝑖𝑛

𝑚𝑖𝑛

51

52

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 23

Geometry proxies:
Oriented Bounding Box (OBB)

 A “parallelepiped”
 generalized version

of AABB:
it’s not axis-aligned

 storage:
 a rotation +
 an AABB

 Can be freely transformed
 note: but only if scaling is uniform

 Tests: still relatively easy (exercise: how to test points?)

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

53

54

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 24

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-spaces
 Same as prev,

put in but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

Geometry proxies
a (general) Polyhedron

 A… luxury Collider
 The most accurate approximations
 But, the most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see next lecture)

 Creation (treat them as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

not worth it fora Bounding Volume !

potentially concave

55

56

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 25

Composite Geometry Proxies

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub

proxy
 Very expressive
 better approximation for many objects,

even with few proxies
 note: union of convex proxies can be

concave !
 Still quite efficient to store / test
 Difficult to construct automatically
 Open problem

Collision Proxy examples

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

61

62

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 26

Collision Proxy examples

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

YESNO
Done

Collision with
collider?

Done!
(early reject)

Collision with
bounding proxy?

NO

Bounding Volume +
Collision Proxy

YES

Produce collision data.
Collision response.

63

64

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 27

Bounding Volume +
Collision Proxy

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

with, inside,
a more complex
Collision Object
approximating

the object

note: intersect and collide
aren’t the same function here

How to construct a geometry proxy
to be used as a collider?

 “Given an object representation M,
build a good collision proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially if we want to pick simpler

(more efficient) proxies
 such as compound of a few spheres, capsules, boxes

 especially if we want good approximations

 It’s often done manually by digital artists

Geometry proxies for colliders are assets !

65

66

3D Video Games
06: Game Physics - Collisions 1

2024-04-18

Marco Tarini
Università degli studi di Milano 28

How to construct a geometry proxy
to be used as a bounding volume?

 “Given an object representation M,
build a thigh bounding volume for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s difficult to find the optimal (smallest possible)
bounding volume automatically

 A lot easier to find a “good enough” bounding volume.
 For example, think about an algorithm to find

bounding volumes of type…
 AABB (trivial)
 Sphere – i.e. a “bounding sphere” (less trivial)
 Capsule (difficult!)

Dirgression: collision detection
in traditional 2D sprite-based games

 An easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support, as part of sprite rendering)
 little need for proxy approximations for colliders

(same structure – the sprite – both for collision and for rendering)
 easy bounding “volume”: bounding-rectangle of the sprite

NO COLLISION NO COLLISION COLLISION

in screen space

67

68

