3D Video Games

06: Game Physics - Collisions 2
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Geometry proxies
a (general) Polyhedron

potentially concave

Ve not worth it for a Bounding Volume !
A... luxury Collider
e The most accurate approximations
e But, the most expensive tests / storage
Specific algorithms to test for collisions
® requiring some preprocessing
e and data structures (BSP-trees, see next lecture)
Creation (treat them as meshes):
e sometimes, with automatic simplification
e often, hand-designed by artists (low poly modelling)
Similar to a 3D mesh used for rendering?

e Many differences (compare with mesh, see “3D Models” lecture)
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BSP-trees to encode

ouT

a Polyhedral proxy (Concave too)
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BSP-trees to encode
a Polyhedral proxy
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BSP-tree L

(Binary Spatial Partitioning tree)

e A way to store a (convex, or concave) polyhedron

e A hierarchical structure
e abinary tree
e root = all space, child-nodes = partition of parent i
e each internal node is split by an arbitrary plane <
e plane stored as (N, Ny, Ny, k)
e each leaf: one bit: “inside” or “outside” the proxy

e tree is precomputed (and optimized) for a given
polyhedron

e to test a point = traverse the tree from the top down
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Collision detection on R
Polyhedral proxies: examples

e Point VS Polyhedron:
just follow the tree, end in an IN or OUT leaf

e Sphere VS Polyhedron: more complex (think about it)

e Segment / Ray VS Polyhedron: also complex (think
about it)

e Polyhedron VS Polyhedron: much more complex.
A trace of an algorithm is:

e Preprocessing: find and store all edges (segments)
of all Polyhedra (each edge: two endpoints)

e At testing time: test all edges of polyhedron A vs
polyhedron B (segment VS polyhedron), and viceversa
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3D meshes for geometry proxies vs
3D meshes for rendering (notes)

Sail

— see lecture on 3D models later

e Proxy meshes are

much lower res (e.g. < 10? faces )

no attributes (no uv-mapping, no color, etc)

based generic polygons, not just tris (as long as they are flat)
closed, water-tight (inside != outside)

different internal representation:
if convex : a set of bounding planes
if convex :a BSP tree
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Collision detection: When? L
Collision Detection
Dynamics
physic |, Forces / impulses tet+de
step _ . .
including collision response
* Positional constraints (in PBD)
including non-compenetration
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Collision detection:
strategies

t i t + dt
e Static Collision detection

e (“a posteriori”, “discrete”) @\l

e approximated Q
e simple + quick

NO COLLISION COLLISION

e Dynamic Collision detection Q
e (“apriori”, “continuous”) Q L t + dt
® Qaccurate t

® resource consuming

COLLISION
78
.. . /«static»
CO”'S'On deteC‘Uon. [ (be_cause object;are tested
as if they are still)
1 «a posteriori»
Statlc aka < (because coll. are detected
after they happen)
e Check for collision only after each step «discrete,
(because we check at
discrete time intervals)
e Problem: non-penetration is temporarily violated
e patching it in collision response
not always easy
e Problem: «tunneling» t t + dt
e Can happen if:
- dt too large,
- or, speed too large
- or, objects too thin Q
NO COLLISION | NO COLLISION ®
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/«dynamic»

Collision detection: | (because moving objects

are tested)
1 | «a priori»

Dyna m IC aka (because coll. are detected
before they happen)

e Much more accurate detection «continuous»
(because it is checked

e Bonus: over a temporal interval)

e no need to «teleport the object in the safe position».
e it never left a safe position!
e it's easier to prevent penetrations than to heal them

e Much more difficult to do

e for one-way collision: check the penetration between the static object
and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

e easy for: points (swept volume = segment)

e easy for: spheres (swept volume = capsule — which one?)
e Basically, not practical to do in any other these

e and even then, only use when required
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e Efficiency issues:

a) test between object pairs:
e Must be efficient

b )avoid quadratic explosions
of needed tests

e n objects > n? tests ?

Collision detection Ly
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Collision detection: the broad phase g%

e So far, we have seen how to detect a collision
between one given pair of objects

e Problem: we don’t want to test every pair of objects!
e |dea: in a «broad phase», we quickly identify pairs of
objects that need testing

e Objects that are safely far from each other
are never even tested

e Only objects that are... “suspiciously close” must be tested
e Note: the board phase must be strictly conservative
e not ok: discard object pairs that actually collided,

e ok: test objects that didn’t actually collide
e Let’s see strategies to do so
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!

The «broad-phase» of coll. detection  #3E%

(avoiding quadratic explosion of # of tests)

e Classes of solutions:

[ 1) Sorting-based algorithms ]

2) spatial indexing structures

3) BVH — Bounding Volume Hierarchies
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Sorting based algorithms
Sweep and Prune (SAP)

AABB AABB

AABB

AABB

AABB
AABB

MMy in, Mz max,

84

Sweep And Prune (SAP) strategy

(or “Sort and Sweep”)

1. Bound: PN
e Quickly find the AABB for each collider
(in its current rotation + translation) / \

e E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sortmin, and max, of all AABB together «—__
e Just adjust the sorting used in the previous frame
e It will be already almost sorted! To exploit this...
e use anincremental sorting algorithm, such as quicksort ‘\
3. Sweep the sorted intersections, from smaller to larger o
e Quickly detect intersecting intervals in x (how?)
4. Prune:among AABB intervals, ignore the ones
that don’t also intersect in both y and z

e Test the other pairs for collision

2r
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The «broad-phase» of coll. detection g5
(avoiding quadratic explosion of # of tests)

e Classes of solutions:

1) Sorting-based algorithms

[ 2) spatial indexing structures ]

3) BVH — Bounding Volume Hierarchies
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Spatial indexing structures i

-~

e Data structures to accelerate queries of the kind:
“I'm in this 3D pos. Which object(s) are around me, if any?”

e Tasks:
e (1) construction / update
e for static parts of the scene, a preprocessing. Cheap! ©
e for moving parts of the scene, an update! Consuming! ®
e (another good reason to tag them)
e (2)access /usage
e as fast as possible
e Commonest structures:
e Regular Grid
e kD-Tree
e QOct-Tree
e and its 2D equivalent: the Quad-Tree
e BSPTree
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Regular Grid (or: lattice) H,

the scene

88

Regular Grid (or: lattice) H,

e Array 3D of cells (all the same size)

e each cell = a list of pointers to collison objects
e Indexing function:

e Point3D = cell index, (constant time!)
e Construction: (“scatter” approach)

e for each object B, find all the cells it touches, add a pointer to B to them
e Queries: (“gather” approach)

e given query point p,

return all object in corresponding cell and adjacent ones

e Difficult choice: cell size

e too small: memory occupancy explodes

e too big: too many objects in one cell (not efficient)
e Problem: RAM size

e Cubic with resolution!

e Most cells are empty: hash tables can be used
to balance efficiency / storage-update cost
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kD-trees

the scene

90

kD-trees

e Hierarchical structure: a tree
e each node: a subpart of the 3D space
e root: all the world
e child nodes: partitions of the father
e objects linked to leaves

e kD-tree:

e binary tree

e each node: split over one dimension (in 3D: X,Y,Z)

e variant:
e each node optimizes (and stores) which dimension, or
e always same order: e.g. X then Y then Z

e variant:
e each node optimizes the split point, or
e always in the middle
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Quad-Tree
(in 2D)

the (2D) world
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Octree (or oct-tree)
(same, for 3D)

i 01010101010 0]020]0]010)0)010)0
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Tll—" ]
Octrees (in 3D)

e Similar to kD-trees, but:
e tree: branching factor: 4 (in 2D) or 8 (in 3D)

e each node: splits halfway across all dimensions at once
XandYin2D
XandYandZin3D

e Construction (just as kD-trees):

e continue splitting until end nodes have
few enough objects
(or limit depth reached)

Quad-trees (in 2D) L
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ar
BSP-tree b
Binary Spatial Partition tree
o
- * XX X X I¢; ‘
: O ........... id P
® . ®
the ;/vorld
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BSP-tree, this time Ny
as a spatial indexing structure

e root = all scene,
e child-nodes = partition of parent (as usual)
e spatial query = traverse the tree from the top down (as usual)
e abinary tree (so far, same as as kD-trees)
e each node is split by an arbitrary plane

e planeis stored at node, as (N, Ny, Ny, k)
e planes can be optimized for a given scene

e e.g., togo fora 50%-50% object split at each node

e e.g, to leave exactly one object at leaves
e Pro:
they can be optimized for optimal queries: better query time!
e Con:
must be optimized during construction: worse construction time!

in 2D: a line

—

96
A
The «broad-phase» of coll. detection g5y
(avoiding quadratic explosion of # of tests)
e Classes of solutions:
1) Sorting-based algorithms
2) spatial indexing structures
[3) BVH — Bounding Volume Hierarchies ]
97
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BVH T
Bounding Volume Hierarchy

S8
o

98
BVH — b
Bounding Volume Hierarchies
%
: \ﬁ &
= %{é A G)
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Bounding Volume Hierarchies

100

BVH Ly
Bounding Volume Hierarchy

e We can use the hierarchy already defined by the
scene graph

e instead of a spatially derived one

associate a Bounding Volumes to each node

e rule: a BV of a node bounds all objects in the subtree
construction / update: quick! ©

e bottom-up

using it:

e top-down: visit (how?)

e note: it’s not a single root to leaf path

e may need to follow multiple children of a node
(in a BSP-tree: only one)
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Broad phase strategies: Recap u,

Regular Grid

o © parallelizable construction

o © constant time access (best!)

e ® huge in RAM space — OR hashing (extra cost)

o ® requisite: volume of playfield must be known in advance, cannot be too large
kD-tree, Oct-tree, Quad-tree : as above but...

o  © more compact in RAM / can deal with larger playfields

o  ® more complex, not as parallelizable construction

BSP-tree

o © optimized splits! = best performance when accessed

o ® optimized splits! = more complex construction / update

e good candidate for broad-phase of static parts of the scene?

e (also, the perfect structure to model (general) Polyhedral Geometric Proxies)
BVH

o O can exploit existing scene hierarchy (scene graph)

o  ® non necessarily very efficient to access (excessive tree depth)

e good candidate for intermediate phase of dynamic parts of the scene?

SAP

o ®/©O N log N to construct, but faster to update

e Requisite: objects cannot be too large (e.g. 3D model of a room / a cave / etc)
e good candidate for broad phase of dynamic parts?
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Collision Detection: ﬁ,
to learn more...

Christer Ericson (ACTIVISION):

Real-Time Collision Detection
The Morgan Kaufmann Series in
Interactive 3-D Technology
HAR/CDR Edition

Elsevier
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Physics Engine:
an implementation issue for GPU

e Task: Dynamics
e (forces, speed and position updates...)
e simple structures, fixed workflow
e highly parallelizable: GPU possible
e Task: Constraints Enforcement
e still moderately simple structures, fixed workflow
e problem: collision constraints not know a-priori
o still highly parallelizable: hopefully, GPU possible
e Task: Collisions Detection

e non-trivial data structures, hierarchies, recursive algorithms, sorting...

e hugely variable workflow

e e.g.: quick on no-collision, more work to do when the rare collisions occur

difficult to parallelize: CPU

but the outcome affects the other two tasks (e.g., creates constraints)

e ==>CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)
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End of Game Physics.
To gather more info...

e Erwin Coumans
SIGGRAPH 2015 course

e Miuller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)

e David H. Eberly:
Game Physics (2nd Edition)
MK Press

e lan Millington:
Game Physics Engine Development (2nd Edition)
MK Press
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