
3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 

lec. 7: Game Textures 

lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Geometry proxies
a (general) Polyhedron

 A… luxury Collider
 The most accurate approximations
 But, the most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see next lecture)

 Creation (treat them as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, see “3D Models” lecture)

not worth it for a Bounding Volume !

potentially concave

69

70

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 2

BSP-trees to encode
a Polyhedral proxy (Concave too)

IN

OUT

BSP-trees to encode
a Polyhedral proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

E

C

B

A

in front behind

F

72

73

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 3

BSP-tree
(Binary Spatial Partitioning tree)

 A way to store a (convex, or concave) polyhedron
 A hierarchical structure
 a binary tree
 root = all space, child-nodes = partition of parent
 each internal node is split by an arbitrary plane
 plane stored as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 each leaf: one bit: “inside” or “outside” the proxy
 tree is precomputed (and optimized) for a given

polyhedron
 to test a point = traverse the tree from the top down

in 2D: a line

Collision detection on
Polyhedral proxies: examples

 Point VS Polyhedron:
just follow the tree, end in an IN or OUT leaf

 Sphere VS Polyhedron: more complex (think about it)
 Segment / Ray VS Polyhedron: also complex (think

about it)
 Polyhedron VS Polyhedron: much more complex.

A trace of an algorithm is:
 Preprocessing: find and store all edges (segments)

of all Polyhedra (each edge: two endpoints)
 At testing time: test all edges of polyhedron A vs

polyhedron B (segment VS polyhedron), and viceversa

74

75

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 4

3D meshes for geometry proxies vs
3D meshes for rendering (notes)

 Proxy meshes are
 much lower res (e.g. < 102 faces)
 no attributes (no uv-mapping, no color, etc)

 based generic polygons, not just tris (as long as they are flat)

 closed, water-tight (inside != outside)

 different internal representation:
if convex : a set of bounding planes
if convex : a BSP tree

see lecture on 3D models later

Collision detection: When?

physic
step

Dynamics
• Forces / impulses

including collision response

• Positional constraints (in PBD)

including non-compenetration

Collision Detection

𝑡 ← 𝑡 + 𝑑𝑡

76

77

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 5

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 resource consuming

𝑡

𝑡 + 𝑑𝑡

COLLISION

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

COLLISION

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunneling»
 Can happen if:

- 𝑑𝑡 too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

NO COLLISION 

aka

78

79

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 6

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «teleport the object in the safe position».
 it never left a safe position!
 it’s easier to prevent penetrations than to heal them

 Much more difficult to do
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, not practical to do in any other these
 and even then, only use when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a temporal interval)

Aka:aka

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

80

81

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 7

Collision detection: the broad phase

 So far, we have seen how to detect a collision
between one given pair of objects

 Problem: we don’t want to test every pair of objects!
 Idea: in a «broad phase», we quickly identify pairs of

objects that need testing
 Objects that are safely far from each other

are never even tested
 Only objects that are… “suspiciously close” must be tested

 Note: the board phase must be strictly conservative
 not ok: discard object pairs that actually collided,
 ok: test objects that didn’t actually collide

 Let’s see strategies to do so

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

82

83

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 8

Sorting based algorithms
Sweep and Prune (SAP)

AABB

AABB

AABB

AABB

AABB

AABB

𝑥

AABB

𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫

Sweep And Prune (SAP) strategy
(or “Sort and Sweep”)

1. Bound:
 Quickly find the AABB for each collider

(in its current rotation + translation)
 E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sort 𝑚𝑖𝑛௫ and 𝑚𝑎𝑥௫ of all AABB together
 Just adjust the sorting used in the previous frame
 It will be already almost sorted! To exploit this…
 use an incremental sorting algorithm, such as quicksort

3. Sweep the sorted intersections, from smaller to larger
 Quickly detect intersecting intervals in 𝑥 (how?)

4. Prune: among AABB intervals, ignore the ones
that don’t also intersect in both 𝑦 and 𝑧
 Test the other pairs for collision

2𝑟

2𝑟

only
O(𝑛 log 𝑛)

Even
faster!
O(𝑛)

84

85

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 9

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m in this 3D pos. Which object(s) are around me, if any?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap! 
 for moving parts of the scene, an update! Consuming! 
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures:
 Regular Grid
 kD-Tree
 Oct-Tree

 and its 2D equivalent: the Quad-Tree
 BSP Tree

86

87

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 10

ba

fedc

jihg

lk

ponm

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D  cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

88

89

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 11

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

90

91

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 12

Quad-Tree
(in 2D)

the (2D) world

Octree (or oct-tree)
(same, for 3D)

92

93

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 13

Quad-trees (in 2D)
Octrees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits halfway across all dimensions at once

X and Y in 2D
X and Y and Z in 3D

 Construction (just as kD-trees):
 continue splitting until end nodes have

few enough objects
(or limit depth reached)

BSP-tree
Binary Spatial Partition tree

the world

94

95

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 14

BSP-tree, this time
as a spatial indexing structure

 root = all scene,
 child-nodes = partition of parent (as usual)
 spatial query = traverse the tree from the top down (as usual)
 a binary tree (so far, same as as kD-trees)
 each node is split by an arbitrary plane

 plane is stored at node, as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 planes can be optimized for a given scene
 e.g., to go for a 50%-50% object split at each node
 e.g., to leave exactly one object at leaves
 Pro:

they can be optimized for optimal queries: better query time!
 Con:

must be optimized during construction: worse construction time!

in 2D: a line

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

96

97

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 15

BVH
Bounding Volume Hierarchy

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

98

99

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 16

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

BVH
Bounding Volume Hierarchy

 We can use the hierarchy already defined by the
scene graph
 instead of a spatially derived one

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick! 
 bottom-up

 using it:
 top-down: visit (how?)
 note: it’s not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

100

101

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 17

Broad phase strategies: Recap
 Regular Grid

  parallelizable construction
  constant time access (best!)
  huge in RAM space – OR hashing (extra cost)
  requisite: volume of playfield must be known in advance, cannot be too large

 kD-tree, Oct-tree, Quad-tree : as above but…
 more compact in RAM / can deal with larger playfields
 more complex, not as parallelizable construction

 BSP-tree
  optimized splits!  best performance when accessed
  optimized splits! more complex construction / update
 good candidate for broad-phase of static parts of the scene?
 (also, the perfect structure to model (general) Polyhedral Geometric Proxies)

 BVH
  can exploit existing scene hierarchy (scene graph)
  non necessarily very efficient to access (excessive tree depth)
 good candidate for intermediate phase of dynamic parts of the scene?

 SAP
 / N log N to construct, but faster to update
 Requisite: objects cannot be too large (e.g. 3D model of a room / a cave / etc)
 good candidate for broad phase of dynamic parts?

Collision Detection:
to learn more…

Christer Ericson (ACTIVISION):
Real-Time Collision Detection
The Morgan Kaufmann Series in
Interactive 3-D Technology
HAR/CDR Edition
Elsevier

102

103

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 18

Physics Engine:
an implementation issue for GPU
 Task: Dynamics

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection
 non-trivial data structures, hierarchies, recursive algorithms, sorting…
 hugely variable workflow

 e.g.: quick on no-collision, more work to do when the rare collisions occur
 difficult to parallelize: CPU
 but the outcome affects the other two tasks (e.g., creates constraints)

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

End of Game Physics.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

 David H. Eberly:
Game Physics (2nd Edition)
MK Press

 Ian Millington:
Game Physics Engine Development (2nd Edition)
MK Press

104

105

