
3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models

lec. 7: Game Textures

lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: Networking for 3D Games
lec. 11: 3D Audio for 3D Games
lec. 12: Rendering Techniques for 3D Games
lec. 13: Artificial Intelligence for 3D Games

Geometry proxies
a (general) Polyhedron

 A… luxury Collider
 The most accurate approximations
 But, the most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see next lecture)

 Creation (treat them as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, see “3D Models” lecture)

not worth it for a Bounding Volume !

potentially concave

69

70

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 2

BSP-trees to encode
a Polyhedral proxy (Concave too)

IN

OUT

BSP-trees to encode
a Polyhedral proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

E

C

B

A

in front behind

F

72

73

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 3

BSP-tree
(Binary Spatial Partitioning tree)

 A way to store a (convex, or concave) polyhedron
 A hierarchical structure
 a binary tree
 root = all space, child-nodes = partition of parent
 each internal node is split by an arbitrary plane
 plane stored as (𝑛 , 𝑛 , 𝑛 , 𝑘)

 each leaf: one bit: “inside” or “outside” the proxy
 tree is precomputed (and optimized) for a given

polyhedron
 to test a point = traverse the tree from the top down

in 2D: a line

Collision detection on
Polyhedral proxies: examples

 Point VS Polyhedron:
just follow the tree, end in an IN or OUT leaf

 Sphere VS Polyhedron: more complex (think about it)
 Segment / Ray VS Polyhedron: also complex (think

about it)
 Polyhedron VS Polyhedron: much more complex.

A trace of an algorithm is:
 Preprocessing: find and store all edges (segments)

of all Polyhedra (each edge: two endpoints)
 At testing time: test all edges of polyhedron A vs

polyhedron B (segment VS polyhedron), and viceversa

74

75

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 4

3D meshes for geometry proxies vs
3D meshes for rendering (notes)

 Proxy meshes are
 much lower res (e.g. < 102 faces)
 no attributes (no uv-mapping, no color, etc)

 based generic polygons, not just tris (as long as they are flat)

 closed, water-tight (inside != outside)

 different internal representation:
if convex : a set of bounding planes
if convex : a BSP tree

see lecture on 3D models later

Collision detection: When?

physic
step

Dynamics
• Forces / impulses

including collision response

• Positional constraints (in PBD)

including non-compenetration

Collision Detection

𝑡 ← 𝑡 + 𝑑𝑡

76

77

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 5

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 resource consuming

𝑡

𝑡 + 𝑑𝑡

COLLISION

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

COLLISION

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunneling»
 Can happen if:

- 𝑑𝑡 too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

NO COLLISION

aka

78

79

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 6

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «teleport the object in the safe position».
 it never left a safe position!
 it’s easier to prevent penetrations than to heal them

 Much more difficult to do
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, not practical to do in any other these
 and even then, only use when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a temporal interval)

Aka:aka

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

80

81

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 7

Collision detection: the broad phase

 So far, we have seen how to detect a collision
between one given pair of objects

 Problem: we don’t want to test every pair of objects!
 Idea: in a «broad phase», we quickly identify pairs of

objects that need testing
 Objects that are safely far from each other

are never even tested
 Only objects that are… “suspiciously close” must be tested

 Note: the board phase must be strictly conservative
 not ok: discard object pairs that actually collided,
 ok: test objects that didn’t actually collide

 Let’s see strategies to do so

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

82

83

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 8

Sorting based algorithms
Sweep and Prune (SAP)

AABB

AABB

AABB

AABB

AABB

AABB

𝑥

AABB

𝑚𝑖𝑛 𝑚𝑎𝑥𝑚𝑖𝑛 𝑚𝑎𝑥

Sweep And Prune (SAP) strategy
(or “Sort and Sweep”)

1. Bound:
 Quickly find the AABB for each collider

(in its current rotation + translation)
 E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sort 𝑚𝑖𝑛 and 𝑚𝑎𝑥 of all AABB together
 Just adjust the sorting used in the previous frame
 It will be already almost sorted! To exploit this…
 use an incremental sorting algorithm, such as quicksort

3. Sweep the sorted intersections, from smaller to larger
 Quickly detect intersecting intervals in 𝑥 (how?)

4. Prune: among AABB intervals, ignore the ones
that don’t also intersect in both 𝑦 and 𝑧
 Test the other pairs for collision

2𝑟

2𝑟

only
O(𝑛 log 𝑛)

Even
faster!
O(𝑛)

84

85

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 9

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m in this 3D pos. Which object(s) are around me, if any?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap!
 for moving parts of the scene, an update! Consuming!
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures:
 Regular Grid
 kD-Tree
 Oct-Tree

 and its 2D equivalent: the Quad-Tree
 BSP Tree

86

87

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 10

ba

fedc

jihg

lk

ponm

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

88

89

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 11

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

90

91

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 12

Quad-Tree
(in 2D)

the (2D) world

Octree (or oct-tree)
(same, for 3D)

92

93

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 13

Quad-trees (in 2D)
Octrees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits halfway across all dimensions at once

X and Y in 2D
X and Y and Z in 3D

 Construction (just as kD-trees):
 continue splitting until end nodes have

few enough objects
(or limit depth reached)

BSP-tree
Binary Spatial Partition tree

the world

94

95

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 14

BSP-tree, this time
as a spatial indexing structure

 root = all scene,
 child-nodes = partition of parent (as usual)
 spatial query = traverse the tree from the top down (as usual)
 a binary tree (so far, same as as kD-trees)
 each node is split by an arbitrary plane

 plane is stored at node, as (𝑛 , 𝑛 , 𝑛 , 𝑘)

 planes can be optimized for a given scene
 e.g., to go for a 50%-50% object split at each node
 e.g., to leave exactly one object at leaves
 Pro:

they can be optimized for optimal queries: better query time!
 Con:

must be optimized during construction: worse construction time!

in 2D: a line

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

96

97

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 15

BVH
Bounding Volume Hierarchy

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

98

99

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 16

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

BVH
Bounding Volume Hierarchy

 We can use the hierarchy already defined by the
scene graph
 instead of a spatially derived one

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick!
 bottom-up

 using it:
 top-down: visit (how?)
 note: it’s not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

100

101

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 17

Broad phase strategies: Recap
 Regular Grid

 parallelizable construction
 constant time access (best!)
 huge in RAM space – OR hashing (extra cost)
 requisite: volume of playfield must be known in advance, cannot be too large

 kD-tree, Oct-tree, Quad-tree : as above but…
 more compact in RAM / can deal with larger playfields
 more complex, not as parallelizable construction

 BSP-tree
 optimized splits! best performance when accessed
 optimized splits! more complex construction / update
 good candidate for broad-phase of static parts of the scene?
 (also, the perfect structure to model (general) Polyhedral Geometric Proxies)

 BVH
 can exploit existing scene hierarchy (scene graph)
 non necessarily very efficient to access (excessive tree depth)
 good candidate for intermediate phase of dynamic parts of the scene?

 SAP
 / N log N to construct, but faster to update
 Requisite: objects cannot be too large (e.g. 3D model of a room / a cave / etc)
 good candidate for broad phase of dynamic parts?

Collision Detection:
to learn more…

Christer Ericson (ACTIVISION):
Real-Time Collision Detection
The Morgan Kaufmann Series in
Interactive 3-D Technology
HAR/CDR Edition
Elsevier

102

103

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

Marco Tarini
Università degli studi di Milano 18

Physics Engine:
an implementation issue for GPU
 Task: Dynamics

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection
 non-trivial data structures, hierarchies, recursive algorithms, sorting…
 hugely variable workflow

 e.g.: quick on no-collision, more work to do when the rare collisions occur
 difficult to parallelize: CPU
 but the outcome affects the other two tasks (e.g., creates constraints)

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

End of Game Physics.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

 David H. Eberly:
Game Physics (2nd Edition)
MK Press

 Ian Millington:
Game Physics Engine Development (2nd Edition)
MK Press

104

105

