3D Video Games

06: Game Physics - Collisions 2

Course Plan

lec. 1: Introduction @

lec. 2: Mathematics for 3D Games @0 000®
lec. 3: Scene Graph @ @
lec. 4: Game 3D Physics 000®® + @

lec. 5: Game Particle Systems D

lec. 6: Game 3D Models @4

lec. 7: Game Textures D@

lec. 9: Game Materials €

lec. 8: Game 3D Animations D@ @

lec. 10: Networking for 3D Games @

lec. 11: 3D Audio for 3D Games @

lec. 12: Rendering Techniques for 3D Games @
lec. 13: Artificial Intelligence for 3D Games @

69

Geometry proxies
a (general) Polyhedron

potentially concave

Ve not worth it for a Bounding Volume !
A... luxury Collider
e The most accurate approximations
e But, the most expensive tests / storage
Specific algorithms to test for collisions
® requiring some preprocessing
e and data structures (BSP-trees, see next lecture)
Creation (treat them as meshes):
e sometimes, with automatic simplification
e often, hand-designed by artists (low poly modelling)
Similar to a 3D mesh used for rendering?

e Many differences (compare with mesh, see “3D Models” lecture)

70

Marco Tarini

Universita degli studi di Milano

2024-04-22
. |
1

3D Video Games
06: Game Physics - Collisions 2

BSP-trees to encode

ouT

a Polyhedral proxy (Concave too)

72

BSP-trees to encode
a Polyhedral proxy

ouT

ouT

ouT

IN

ouT

IN

73

Marco Tarini
Universita degli studi di Milano

2024-04-22

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

"
BSP-tree L

(Binary Spatial Partitioning tree)

e A way to store a (convex, or concave) polyhedron

e A hierarchical structure
e abinary tree
e root = all space, child-nodes = partition of parent i
e each internal node is split by an arbitrary plane <
e plane stored as (N, Ny, Ny, k)
e each leaf: one bit: “inside” or “outside” the proxy

e tree is precomputed (and optimized) for a given
polyhedron

e to test a point = traverse the tree from the top down

74

Collision detection on R
Polyhedral proxies: examples

e Point VS Polyhedron:
just follow the tree, end in an IN or OUT leaf

e Sphere VS Polyhedron: more complex (think about it)

e Segment / Ray VS Polyhedron: also complex (think
about it)

e Polyhedron VS Polyhedron: much more complex.
A trace of an algorithm is:

e Preprocessing: find and store all edges (segments)
of all Polyhedra (each edge: two endpoints)

e At testing time: test all edges of polyhedron A vs
polyhedron B (segment VS polyhedron), and viceversa

75

Universita degli studi di Milano

2024-04-22

3D Video Games
06: Game Physics - Collisions 2

2024-04-22

3D meshes for geometry proxies vs
3D meshes for rendering (notes)

Sail

— see lecture on 3D models later

e Proxy meshes are

much lower res (e.g. < 10? faces)

no attributes (no uv-mapping, no color, etc)

based generic polygons, not just tris (as long as they are flat)
closed, water-tight (inside != outside)

different internal representation:
if convex : a set of bounding planes
if convex :a BSP tree

76
Collision detection: When? L
Collision Detection
Dynamics
physic |, Forces / impulses tet+de
step _ . .
including collision response
* Positional constraints (in PBD)
including non-compenetration
77

Marco Tarini

Universita degli studi di Milano

3D Video Games

06: Game Physics - Collisions 2

Collision detection:
strategies

t i t + dt
e Static Collision detection

e (“a posteriori”, “discrete”) @\l

e approximated Q
e simple + quick

NO COLLISION COLLISION

e Dynamic Collision detection Q
e (“apriori”, “continuous”) Q L t + dt
® Qaccurate t

® resource consuming

COLLISION
78
.. . /«static»
CO”'S'On deteC‘Uon. [(be_cause object;are tested
as if they are still)
1 «a posteriori»
Statlc aka < (because coll. are detected
after they happen)
e Check for collision only after each step «discrete,
(because we check at
discrete time intervals)
e Problem: non-penetration is temporarily violated
e patching it in collision response
not always easy
e Problem: «tunneling» t t + dt
e Can happen if:
- dt too large,
- or, speed too large
- or, objects too thin Q
NO COLLISION | NO COLLISION ®
79

Marco Tarini

Universita degli studi di Milano

2024-04-22

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

/«dynamic»

Collision detection: | (because moving objects

are tested)
1 | «a priori»

Dyna m IC aka (because coll. are detected
before they happen)

e Much more accurate detection «continuous»
(because it is checked

e Bonus: over a temporal interval)

e no need to «teleport the object in the safe position».
e it never left a safe position!
e it's easier to prevent penetrations than to heal them

e Much more difficult to do

e for one-way collision: check the penetration between the static object
and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

e easy for: points (swept volume = segment)

e easy for: spheres (swept volume = capsule — which one?)
e Basically, not practical to do in any other these

e and even then, only use when required

80

e Efficiency issues:

a) test between object pairs:
e Must be efficient

b)avoid quadratic explosions
of needed tests

e n objects > n? tests ?

Collision detection Ly

81

Universita degli studi di Milano

2024-04-22

3D Video Games

06: Game Physics - Collisions 2

Collision detection: the broad phase g%

e So far, we have seen how to detect a collision
between one given pair of objects

e Problem: we don’t want to test every pair of objects!
e |dea: in a «broad phase», we quickly identify pairs of
objects that need testing

e Objects that are safely far from each other
are never even tested

e Only objects that are... “suspiciously close” must be tested
e Note: the board phase must be strictly conservative
e not ok: discard object pairs that actually collided,

e ok: test objects that didn’t actually collide
e Let’s see strategies to do so

82

!

The «broad-phase» of coll. detection #3E%

(avoiding quadratic explosion of # of tests)

e Classes of solutions:

[1) Sorting-based algorithms]

2) spatial indexing structures

3) BVH — Bounding Volume Hierarchies

83

Marco Tarini

Universita degli studi di Milano

2024-04-22

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

Sorting based algorithms
Sweep and Prune (SAP)

AABB AABB

AABB

AABB

AABB
AABB

MMy in, Mz max,

84

Sweep And Prune (SAP) strategy

(or “Sort and Sweep”)

1. Bound: PN
e Quickly find the AABB for each collider
(in its current rotation + translation) / \

e E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sortmin, and max, of all AABB together «—__
e Just adjust the sorting used in the previous frame
e It will be already almost sorted! To exploit this...
e use anincremental sorting algorithm, such as quicksort ‘\
3. Sweep the sorted intersections, from smaller to larger o
e Quickly detect intersecting intervals in x (how?)
4. Prune:among AABB intervals, ignore the ones
that don’t also intersect in both y and z

e Test the other pairs for collision

2r

85

Universita degli studi di Milano

2024-04-22

3D Video Games 2024-04-22
06: Game Physics - Collisions 2

The «broad-phase» of coll. detection g5
(avoiding quadratic explosion of # of tests)

e Classes of solutions:

1) Sorting-based algorithms

[2) spatial indexing structures]

3) BVH — Bounding Volume Hierarchies

86

Spatial indexing structures i

-~

e Data structures to accelerate queries of the kind:
“I'm in this 3D pos. Which object(s) are around me, if any?”

e Tasks:
e (1) construction / update
e for static parts of the scene, a preprocessing. Cheap! ©
e for moving parts of the scene, an update! Consuming! ®
e (another good reason to tag them)
e (2)access /usage
e as fast as possible
e Commonest structures:
e Regular Grid
e kD-Tree
e QOct-Tree
e and its 2D equivalent: the Quad-Tree
e BSPTree

87

Marco Tarini
Universita degli studi di Milano 9

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

Regular Grid (or: lattice) H,

the scene

88

Regular Grid (or: lattice) H,

e Array 3D of cells (all the same size)

e each cell = a list of pointers to collison objects
e Indexing function:

e Point3D = cell index, (constant time!)
e Construction: (“scatter” approach)

e for each object B, find all the cells it touches, add a pointer to B to them
e Queries: (“gather” approach)

e given query point p,

return all object in corresponding cell and adjacent ones

e Difficult choice: cell size

e too small: memory occupancy explodes

e too big: too many objects in one cell (not efficient)
e Problem: RAM size

e Cubic with resolution!

e Most cells are empty: hash tables can be used
to balance efficiency / storage-update cost

89

Universita degli studi di Milano

2024-04-22

10

3D Video Games
06: Game Physics - Collisions 2

kD-trees

the scene

90

kD-trees

e Hierarchical structure: a tree
e each node: a subpart of the 3D space
e root: all the world
e child nodes: partitions of the father
e objects linked to leaves

e kD-tree:

e binary tree

e each node: split over one dimension (in 3D: X,Y,Z)

e variant:
e each node optimizes (and stores) which dimension, or
e always same order: e.g. X then Y then Z

e variant:
e each node optimizes the split point, or
e always in the middle

91

Marco Tarini
Universita degli studi di Milano

2024-04-22

11

3D Video Games 2024-04-22
06: Game Physics - Collisions 2

Quad-Tree
(in 2D)

the (2D) world

92

Octree (or oct-tree)
(same, for 3D)

i 01010101010 0]020]0]010)0)010)0

93

Marco Tarini
Universita degli studi di Milano 12

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

Tll—"]
Octrees (in 3D)

e Similar to kD-trees, but:
e tree: branching factor: 4 (in 2D) or 8 (in 3D)

e each node: splits halfway across all dimensions at once
XandYin2D
XandYandZin3D

e Construction (just as kD-trees):

e continue splitting until end nodes have
few enough objects
(or limit depth reached)

Quad-trees (in 2D) L

94
ar
BSP-tree b
Binary Spatial Partition tree
o
- * XX X X I¢; ‘
: O id P
® . ®
the ;/vorld
95

Universita degli studi di Milano

2024-04-22

13

3D Video Games 2024-04-22
06: Game Physics - Collisions 2

BSP-tree, this time Ny
as a spatial indexing structure

e root = all scene,
e child-nodes = partition of parent (as usual)
e spatial query = traverse the tree from the top down (as usual)
e abinary tree (so far, same as as kD-trees)
e each node is split by an arbitrary plane

e planeis stored at node, as (N, Ny, Ny, k)
e planes can be optimized for a given scene

e e.g., togo fora 50%-50% object split at each node

e e.g, to leave exactly one object at leaves
e Pro:
they can be optimized for optimal queries: better query time!
e Con:
must be optimized during construction: worse construction time!

in 2D: a line

—

96
A
The «broad-phase» of coll. detection g5y
(avoiding quadratic explosion of # of tests)
e Classes of solutions:
1) Sorting-based algorithms
2) spatial indexing structures
[3) BVH — Bounding Volume Hierarchies]
97

Marco Tarini
Universita degli studi di Milano 14

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

BVH T
Bounding Volume Hierarchy

S8
o

98
BVH — b
Bounding Volume Hierarchies
%
: \ﬁ &
= %{é A G)
99

Universita degli studi di Milano

2024-04-22

15

3D Video Games 2024-04-22
06: Game Physics - Collisions 2

Bounding Volume Hierarchies

100

BVH Ly
Bounding Volume Hierarchy

e We can use the hierarchy already defined by the
scene graph

e instead of a spatially derived one

associate a Bounding Volumes to each node

e rule: a BV of a node bounds all objects in the subtree
construction / update: quick! ©

e bottom-up

using it:

e top-down: visit (how?)

e note: it’s not a single root to leaf path

e may need to follow multiple children of a node
(in a BSP-tree: only one)

101

Marco Tarini
Universita degli studi di Milano 16

3D Video Games

06: Game Physics - Collisions 2

Broad phase strategies: Recap u,

Regular Grid

o © parallelizable construction

o © constant time access (best!)

e ® huge in RAM space — OR hashing (extra cost)

o ® requisite: volume of playfield must be known in advance, cannot be too large
kD-tree, Oct-tree, Quad-tree : as above but...

o © more compact in RAM / can deal with larger playfields

o ® more complex, not as parallelizable construction

BSP-tree

o © optimized splits! = best performance when accessed

o ® optimized splits! = more complex construction / update

e good candidate for broad-phase of static parts of the scene?

e (also, the perfect structure to model (general) Polyhedral Geometric Proxies)
BVH

o O can exploit existing scene hierarchy (scene graph)

o ® non necessarily very efficient to access (excessive tree depth)

e good candidate for intermediate phase of dynamic parts of the scene?

SAP

o ®/©O N log N to construct, but faster to update

e Requisite: objects cannot be too large (e.g. 3D model of a room / a cave / etc)
e good candidate for broad phase of dynamic parts?

102

Collision Detection: ﬁ,
to learn more...

Christer Ericson (ACTIVISION):

Real-Time Collision Detection
The Morgan Kaufmann Series in
Interactive 3-D Technology
HAR/CDR Edition

Elsevier

103

Marco Tarini

Universita degli studi di Milano

2024-04-22

17

3D Video Games

06: Game Physics - Collisions 2

Marco Tarini

2024-04-22

Physics Engine:
an implementation issue for GPU

e Task: Dynamics
e (forces, speed and position updates...)
e simple structures, fixed workflow
e highly parallelizable: GPU possible
e Task: Constraints Enforcement
e still moderately simple structures, fixed workflow
e problem: collision constraints not know a-priori
o still highly parallelizable: hopefully, GPU possible
e Task: Collisions Detection

e non-trivial data structures, hierarchies, recursive algorithms, sorting...

e hugely variable workflow

e e.g.: quick on no-collision, more work to do when the rare collisions occur

difficult to parallelize: CPU

but the outcome affects the other two tasks (e.g., creates constraints)

e ==>CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

104

End of Game Physics.
To gather more info...

e Erwin Coumans
SIGGRAPH 2015 course

e Miuller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)

e David H. Eberly:
Game Physics (2nd Edition)
MK Press

e lan Millington:
Game Physics Engine Development (2nd Edition)
MK Press

105

Universita degli studi di Milano

18

