
3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 1

3D video games

Models for Games

Marco Tarini

appearance
★

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics  +  
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

1

2



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 2

In games: “Low-Poly” models
(low resolution meshes)

Metal Slug (1996, Nazca Copr), on Neo Geo (SNK)

Solomons’s key
(1986, Temco)  
on Z80

reminder: 
during the ’80s – early ‘90s, 
the principal asset in games 
consisted in
sprites / tilemaps authored 
by pixel artists ...

3

6



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 3

Triangle Meshes:
the visual appearance of 3D objects

 Data structure for modelling 3D objects
 GPU friendly
 Resolution = number of faces
 Resolution is (potentially) Adaptive 

(that is, more faces where needed)
 Used to model the visual appearance

of 3D physical objects in the game
 at least, the ones which can be represented by their surface
 most solid objects (rigid or not)

 Mathematically: a piecewise linear approximation
of the surface
 a set of 3D samples, “vertices”

connected by a set of triangular “faces” 
connected side to side by “edges”

Triangle Mesh
(or simplicial mesh)

 A set of adjacent triangles
faces

vertices

edges

7

8



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 4

Mesh:
data structure
A mesh consists of
 geometry

 The set of (x,y,z) positions of the vertices
 It’s a sampling of the surface

 connectivity (or topology )
 The set of faces connecting the vertices 

 In a triangle mesh: faces are triangles
(this is what the GPU is designed for!)

 In a quad mesh: faces are quadrilateral
 Quad dominant mesh: most faces are quadrilateral
 Polygonal mesh: faces are polygons (general case)

 attributes
 Data stored at vertices, such as: color, material, normal, …

Mesh: geometry

 Set of vertices
 A position vector (x,y,z) for every vertex
 Coordinates, by definition, are given in Local space!

V2

V3

V5

V4

V1

9

10



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 5

Mesh: connectivity (or topology)

 Faces: triangles connecting vertices
 More in general, polygons,
 connecting triplet of vertices
 just as, in a graph, nodes are connected by edges

V2

V3

V5

V4

V1

T1

T2

T3

Mesh: attributes

 Any quantity that varies over the surface
 sampled at vertices, and interpolated inside triangles

V2

V3

V5

V4

V1

T1

T2

T3

RGB3

RGB2

RGB5

RGB4

RGB1

11

12



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 6

Mesh as a data strucuture:
indexed meshes

 array of vertices
 Each vertex stored as

 x,y,z position (aka the “geometry” of the mesh)
 attributes: (all vertices, the same ones)

any data saved on the surface: e.g. color

 array of triangles 
 the “connectivity»
 Each triangle stored as

 triplet of indices (referring to a vertex in the array)

These two arrays can be seen as tables (buffers)

we can consider 
positions as

attributes too

An indexed mesh in VRAM :
two buffers

V2

V3

V5

V4

V1

T1

T2

T3

Wedge
3:

Wedge
2:

Wedge
1:Tri:

V2V1V4T1

V5V2V4T2

V3V2V5T3

BGRZYXvert

b1g1r1z1y1x1V1

b2g2r2z2y2x2V2

b3g3r3z3y3x3V3

b4g4r4z4y4x4V4

b5g5r5z5y5x5V5

GEOMETRY + ATTRIBUTES

CONNECTIVITY

14

15



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 7

Mesh resolution

 Defined as the number of faces
 or vertices, equivalent because typically #F ≈ 2 ∙ #V)

 Rendering time is linear with resolution
 therefore, in games, resolution is kept small
 aka. «low-poly» models

 Resolution can be adaptive:
 denser vertices & smaller faces in certain parts
 sparser vertices & larger faces in other parts

 Resolution of typical models increases with time
 e.g. 1990s: 105 △ is hi-res
 2000s: 1010 △ is hi-res

Resolution increases over time

800 △ Unreal Tournement
(1999)

Unreal Tounement 2K3 
(2002)

3000 △

Unreal Tournament 3 
(2007)

4,500 △
weapon this

12,000 △

16

19



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 8

Resolution increases over time

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

Mesh attributes: in general
(this applies to any attribute)

 Attribute = any properties stored on the mesh, 
varying on the surface
 Can consist of vectors, versors, or scalars

 It’s stored at each vertex
 Each vertex of a mesh = same collection of attributes 

 It’s implicitly interpolated inside the faces
 Linear interpolation: 

uses barycentric coordinates (see next slides)
 Note: by construction, in indexed meshes 

attributes are C0 continuous across faces
 but C1 discontinuous across faces
 and C∞ inside faces

21

22



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 9

Interpolation of vertex attributes
inside mesh triangles 1/2

𝐩ଶ

𝐩ଵ

𝐩଴

𝐪

 A triangle 𝐓
with vertices  𝐩଴,  𝐩ଵ,  𝐩ଶ

 For every point 𝐪 in 𝐓
there are (unique!)
𝑘଴, 𝑘ଵ, 𝑘ଶ

with 𝑘଴ + 𝑘ଵ + 𝑘ଶ = 1
such that

𝐪 =  𝑘଴  𝐩଴ +  𝑘ଵ 𝐩ଵ +  𝑘ଶ 𝐩ଶ

 𝑘଴, 𝑘ଵ, 𝑘ଶ are called the 
barycentric coordinates of 𝐪 in 𝐓

Interpolation of vertex attributes
inside mesh triangles 1/2

per vertice

𝐩ଶ

𝐩ଵ

RGB2

RGB1

RGB0

𝐩଴

𝑘଴  𝐩଴       +    𝑘ଵ 𝐩ଵ         +  𝑘ଶ 𝐩ଶRGB0 RGB1 RGB2

𝐪

 If we three attributes 
to the three
vertices…

 a point 𝐪 in 𝐓
with baricentric coodinates
𝑘଴, 𝑘ଵ, 𝑘ଶ

is implicitly given
the attribute value

23

24



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 10

 Position  
(aka the “geometry” of the mesh)

 Normal

 Texture Coordinates   
(aka the “UV-mapping” of the mesh)

 Tangent Direction

 Bone links 
(aka the  “skinning” of the mesh)

 Color

Which mesh attributes 
are used in games: a summary (with spoilers)

see lecture on 
animations

(later)

see lecture on 
textures
(later)

see lecture on 
normal maps

(later)

in 
local

space!

Mesh as buffer:
a more realistic views

 Position
 Normal
 Color
 Texture Coordinate
 Tangent Direction
 Bone links

W3:W2:W1:Tri:

T0

T1

T2

T3

T4

T5

T6

T7

BzByBxTzTyTxVUABGRNzNyNxZYXvert

V0

V1

V2

V3

V4

GEOMETRY + ATTRIBUTES

CONNECTIVITY

Floating points
(with a given precision)

Ints
(with 
some #
of bits)

25

27



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 11

Mesh attributes: normals

 A versor
 Representing the surface orientation
 Main use: lighting computation
 Can be computed

automatically from
geometry...

 But it is a part of
the mesh assets:
 the artist is in control of

which edges are soft
and which are  hard

Mesh attributes: normals

 Technically, mesh faces are flat
 the normal is constant over a face
 the normal is discontinuous across faces 

(each mesh edge is “sharp”)

 Usually, that’s not the surface we intend to represent
 The flatness is just an artifact (a defect) of the mesh discretization

 By using a continuously varying normal
(the per-vertex normal interpolated inside faces),
the rendered images gives the illusion of a smooth, curved 
surface
 which is (usually) what we want to represent

 But if we want, can we still represent “hard” (sharp) edges 
 With vertex seams: see below

29

30



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 12

Mesh attributes: normals

if «real» normals
where used 

(«flat shading»)

Using interpolated 
per vertex normals
(smooth shading)

Note: normals are made visible to our eyes due to lighting 
(computation of how light reacts with the surface)

Hard edges (aka sharp edges)
(aka “creases”)

 Edges where the normal is not continuous .

 How to encode (C0) a discontinuity in any attributes?

Soft edges:

Red edges
are hard

31

32



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 13

answer:

Vertex seams

 Vertex seam = two coinciding vertices.  in xyz
 different attributes assigned to each copy

a literal 
“seam”

Vertex seams
 A way to encode any 

attribute discontinuity
 Price to be paid: 

a little bit of data replication…

Wedge 3:Wedge 2:Wedge 1:Tri:

410T0

024T1

635T2

NzNyNxZYX

𝑛𝑧𝟎𝑛𝑦𝟎𝑛𝑥𝟎𝑝𝑧𝟎𝑝𝑦𝟎𝑝𝑥𝟎V0
𝑛𝑧𝟏𝑛𝑦𝟏𝑛𝑥𝟏𝑝𝑧𝟏𝑝𝑦𝟏𝑝𝑥𝟏V1
𝑛𝑧𝟐𝑛𝑦𝟐𝑛𝑥𝟐𝑝𝑧𝟐𝑝𝑦𝟐𝑝𝑥𝟐V2
𝑛𝑧𝟑𝑛𝑦𝟑𝑛𝑥𝟑V3
𝑛𝑧𝟒𝑛𝑦𝟒𝑛𝑥𝟒𝑝𝑧𝟑𝑝𝑦𝟑𝑝𝑥𝟑V4
𝑛𝑧𝟓𝑛𝑦𝟓𝑛𝑥𝟓V5
𝑛𝑧𝟔𝑛𝑦𝟔𝑛𝑥𝟔𝑝𝑧𝟒𝑝𝑦𝟒𝑝𝑥𝟒V6

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

s a m e a s

s a m e a s

33

35



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 14

Rendering of a Mesh
in a nutshell

Load…
 get required data ready on GPU RAM

 Geometry + Attributes buffer(s)
 Connectivity buffer
 Textures
 Shaders
 Parameters / Settings

…and Fire!
 send the “Draw-call” to the GPU 
 using an API

THE MESH

THE  “MATERIAL”

Simplified architecture of PC with Video Card

37

BUS

CPU

ALUs

RAM
(main)

Disk

Video Card

…Internal bus
(of video card)

VRAM
(video RAM)

GPU
ALUs

…

36

37



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 15

Mesh
GPU

Object

LOAD

Life of a Mesh 
in a Game Engine

DISK CENTRAL RAM V-RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

Life of a mesh in a game engine

 Import
 from disk, or from remote

 Optionally, simple Pre-processing
 e.g.: Compute Normals (if needed, i.e. rarely)
 e.g.: Compute Tangent Dirs
 e.g.: Bake Lighting (sometimes)

 Render (each frame)
 GPU based
 It must be loaded in GPU-ram first

44

45



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 16

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
GPU

Object

Memory Management 
(during game execution)

DISK CENTRAL RAM V-RAM

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

Mesh 
on IN VRAM

 Buffers storing the mesh
 GPU APIs call them: Vertex Buffer Object or Vertex Arrays

 They are stored in GPU RAM
 The scarcest one !

 Choices for a Game Engine:
 storage formats, including precisions for each attribute,

index. e.g:
 color? 8 bit per channel
 position? Is 16 bit float per coordinate
 Vertex index? Is 16 bit per face corner enough?

 trade-off between storage cost / accuracy

46

47



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 17

Mesh 
as an asset

 A file (or se of file)
of a given format
sitting on the disk

 Choices for the game engine:
 which formats(s) to use?
 which attributes are needed?
 Etc.

 Issues: 
 storage cost
 loading time

LetterL.off

Example of file format for indexed 
meshes: OFF format

1 5 1
0 5 1
4 3 2 1 0
4 5 4 3 0
4 6 7 8 9
4 6 9 10 11
4 0 1 7 6
4 1 2 8 7
4 2 3 9 8
4 3 4 10 9
4 4 5 11 10
4 5 0 6 11

OFF
12 10 40
0 0 0
3 0 0
3 1 0
1 1 0
1 5 0
0 5 0
0 0 1
3 0 1
3 1 1
1 1 1

# vertices

# faces # edges

x,y,z
2nd 
vertex

1st face:
4 vertices:
with indices
3, 2, 1 and 0

index 0

index 3

index 2
index 1

49

50



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 18

Most common file formats 
for meshes in games
.OBJ (wavefront)

 very broad diffusion
mesh basics: indexed, normals , uv-mapping
 trivial to parse / read
 simple materials too
material index for face (no colors)
 no skinning, animations, scenegraph…

.SMD (              )
 Skeletal animations + skinning
 normals , uv-mapping
meshes: not indexed, no colors…

.MD3 (Quake, IDsoft)
 good for blendshapes
meshes: no colors

.3DS, .MA/.MB  (                             )
 customizable
 “academic”

.DAE (collada:                             +                               )
A format for the Exchange of Digital Assets
 complete:

particle systems, physics attributes,
scenegraph, skinned meshes, blend shapes,
geometric proxies…

 open standard
 too complete? to parsing it completely

.FBX (                            )
 good for animations
 propretary

. glTF (Chronos, opensource)
Graphic Library Tranmission Format
A dump of memory structures for OpenGL rendering
 very complete, and customizable
 open standard
 includes animations, etc

Mesh
GPU

Object

LOAD

Life of a Mesh 
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

53

54



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 19

Mesh Object
(in RAM)

 A (C++ / Javascript / etc) structure
in main RAM

 Choices for a game engine:
 which attribute to store?
 storage formats… (floats, bytes, double…)
 which preprocessing to offer

(typically, at load time)

Data structure for a mesh
(to be used, e.g., for processing)

 Indexed mode in C++ :
class Vertex {

vec3 pos;
rgb color; /* attribute 1 */
vec3 normal; /* attribute 2 */

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> verts; /* geom + attr */
vector<Face> faces; /* connectivity */

};

55

56



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 20

Compute normals
from geometry

 Note: 
the faces orientation
must be coherent

1

23

1

2
3

Opposite direction, coherent edge

A

BC

D

(2)

(1)

v3

v1

v2

Computing normals
from geometry

(1) compute the
normal of each face

(2) cumulate the
normals in each vertex

e1

e2

e1×e2

nො଴

nොଵ

nොଶ nොଷ

nොସ

nොହ

nො୴ =   
nො଴ + ⋯ + nො௞

nො଴ + ⋯ + nො௞

57

59



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 21

Note:
surface normals

geometric normals
 Defined per face
 Implicitly defined

by mesh geometry
 The “real” 

orientation of the  
faces (which are flat!)

normals as attribute
 Defined per vertex
 Explicitly stored,

in the mesh data 
structure

 A choice: which
surface (e.g.) the artist
is trying to represent?

≠

Can be used for computing

Mesh processing:
(or, more in general, Geometry Processing)

 The algorithm above 
for the computation of  per vertex normal
is one example of processing done over a mesh

 Mesh processing: the discipline of generating, 
processing, meshes 
 Algorithms having inputs and/or outputs as meshes

 See CG course for a very brief overview

60

61



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 22

Mesh processing:
(or more in general Geometry Processing)

 A good 
textbook to
mesh processing

C++ libraries for mesh processing

+

VCG-Lib

RWTH (         )

computational geometry
algorithms library

vision and
computer graphic library

INRIA  (        )CNR (        )      

simple geometry 
processing library

libigl

NYU (        )      

62

63



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 23

Mesh processing: a software suite

MeshLab
 open-source, 
 A big collection of geometry processing algorithms

…

Mesh processing: examples of tasks 
commonly employed in games

 Poly reduction / Retopology / Simplification
 e.g. LOD construction
 e.g. transition from (initial) hi-res to (final) low-poly

 Light baking
 Light precomputation
 e.g.: Ambient Occlusion

 U-V map construction
 parametrization / unwrapping

 Texturing
 creation of different types of textures

 Rigging / Skinning / Animation
 to animate

LATER

LATER

LATER

LATER

64

65



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 24

3D Models: sources. 
i.e.: where do a 3D models come from?

Will we’ll see…
 Modelling by digital artists
 Note: the 3D modelling part is just a step 

of the Asset Creation pipeline

 Procedural modelling
 As for any asset, the procedural approach is an option
 Usual trade-offs

 3D acquisition
 Scanning a real world, physical model

3D models: sources

 Or, like any asset, can be just bought / off-sourced
 Try looking any repository for a given type of object

67

68



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 25

Sources for 3D models:
procedural modelling

Procedure that
creates the meshes

parameters

Procedural modelling – see also…

http://everythingprocedural.com/ this week
Game-of-the-Week

69

70



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 26

3D models: 
manual modelling

2D concepts
/ sketches

concept
artist

3D modeller
low-poly

mesh

Mesh modelling

 Task of the 3D modeller
 A type of digital artist

 Popular approaches:
 Direct low-poly modelling
 Potentially, using subdivision surfaces too
 Digital sculpting

71

72



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 27

Mesh modelling: 
a few popular suites

 3D Studio Max (autodesk) ,   
Maya (autodesk)  , 
Cinema4D (maxon)
Lightweight 3D (NewTek), 
Modo (The Foundry) , …
 all-purpose, powerful, complete

 Blender
 the same, plus open-source and 

freeware 
 compare:  Gimp  VS.  Adobe 

Photoshop  for 2D images

 AutoCAD (autodesk), 
SolidWorks (SolidThinking) 
 for CAD

 ZBrush (pixologic) 
(+ Sculptris alpha,  a toy), 
Mudbox (autodesk)
 Sculpting (inclusing texturing)

 Wings3D
 low-poly modelling (& subdivision surfaces)

open-source, small, specialized

 [Rhinoceros]
 parametric surfaces (NURBS)

 FragMotion
 small, specialized on animated meshes

 + a many more for specific contexts
 editing of human models, of architectural

interiors, environments, or specific editors 
for game-engines, etc...

used in classroom demos

Low-poly modelling (demo)

Note: during creation, the meshes can be polygonal instead of triangle based, but is 
simple to decompose any polygon into triangles 
E.g. this can be done by the game engine as a simple preprocessing.

1 2

3 4 5

a cube

with wings3D

73

74



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 28

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D artist) [link]

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D modeller) [link]

76

77



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 29

3D mesh authoring techniques:
subdivision surfaces

 Subdivision step: 
an algorithm that operates on a mesh 
and obtains a higher resolution, smoother mesh

 Can be iterated

Catmull Clark (CC) subdivision

Subdivision Surfaces 
Example: Catmull-Clark schema

level 0 
“control mesh”

level 1 level 2 lvl ∞
“limit surface”

…

level 4

78

79



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 30

3D mesh authoring techniques:
subdivision surfaces

 Many subdivision algorithms (schemas) exists
 each with its own properties

 Produces clean, regular meshes
 Excellent for smooth, curved,

organic looking objects

famously pioneered
by movie industry 

(not games):

Subdivision surfaced
as way to define (curved) surfaced

 Modeler creates a low-poly mesh,  the “control mesh”
 control mesh: piecewise linear (i.e., flat) surface

 The control mesh is subdivided (in theory ∞ times) 
and a “limit surface” is obtained
 limit surface: curved & smooth surface

 The control mesh serves as a representation 
of the limit surface
 note: the subdivision steps are only performed on the fly,

for example, only during rendering (GPU support exists for this)
 the more step are done, the better the limit surface is 

approximated

80

82



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 31

Subdivision surfaces
as a mesh authoring tool (example)

SUBDIV

S
U

B
D

IV

SUBDIV

Doo-Sabin subdivision

An example using the
Catmull-Clark subdivision schema

84

91



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 32

Some popular subdivision schemas

 Doo-Sabin
 operates on any polygonal mesh
 produces polygonal meshes

 Loop
 1-to-4 scheme for triangle meshes (only)

 Butterfly
 1-to-4 scheme for triangle meshes (only)

 Catmull-Clark
 operates on any polygonal mesh
 produces quad-meshes
 traditionally, movie-industry favorite
 a recent trend in games: use during mesh rendering

3D Mesh authoring:
approaches

 Popular 3D modeling approaches:
 Direct low-poly modelling

 e.g. with wings3D

 Subdivision surfaces
 e.g. with blender

 Digital sculpting
 e.g. with Z-brush, 

(or Sculptris Alpha)

95

97



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 33

Digital Sculpting

chisel
mouse

(or stylus)

=

Digital Sculpting

 demo

with wings3D

98

99



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 34

Sources for 3D models: 
3D acquisition

 3D acquisition / 3D scanning
 Technologies for obtaining

3D digital models
from
real-world objects

3D acquisition
(e.g., range scanning)
(specifically, here, laser scanning)

For more info, see Computer Graphics course

Sources for 3D models: 
3D acquisition

Reale model

Sculptor
(real)

Hi res model

3D scanning

100

101



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 35

https://quixel.com/

Sources for 3D models: 
3D acquisition
 3D scanning

 A.k.a. automatic 3D model acquisition
 Many different technologies

 Laser scanners
 Time of flight
 Structured light (kinect)
 …

 Different characteristics
 Results quality

 Noise / resolution
 Automatism
 Invasiveness

 Markers? Powder?
 Real time? (kinect)
 Price
 Max object dimension

 (full body scanner?)

102

103



3D Video Games                                
08: Meshes in Games                            
Part 1

2024-04-29

Marco Tarini                                  
Università degli studi di Milano 36

3D models sources: 
a comparison

scanned & cleaned
hi res mes

(30K triangles)

(sculpted meshes are similar)

manually edited
low-poly mesh
(2K triangles)

PERFECT for games!
(much easier to: animate, 
re-edit, uvmap, …)

VS
Dino,
scanned
by artec3d

Notes about mesh resolution

 all costs: linear on the triangles number
 in memory (disk, CPU RAM, GPU RAM)
 in time (rendering, loading, etc)

 (and, linear with # of vert. with # triangles)
 (rule of thumb: K verts  2K tris)

 reminder: possible adaptive resolution
 higher-res in some parts
 lower-res in others

104

105


