
3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 1

3D VideoGames

Textures
in 3D Games

Marco Tarini

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics  +  
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

appearance

1

2



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 2

Texture mapping

3D geometry
(set of quadrilaterals )

+

2D RGB texture

(here: a color-map)

=

Example (color-map)

3

5



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 3

Texture maps
One of the most common and important 
asset of a game
and one of the biggest V-RAM consumer

Texture maps: data structures

 In practice, a rasterized image

Texture sheet

«Texel»

6

7



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 4

Textures (or texture maps)

 Multiple texture sheets (1 raster image of texels) 
each defines a signal over the mesh
 Similar purpose to per-vertex attributes!
 but… 

 # texels >> # vertices
 More complex signals!

 A texel = a sample of that signal
 Between samples: (bilinear) interpolation

 Signal sampling: 
 On a regular 2D grid (raster image)
 At a given fixed resolution (NOT adaptive!)

Texture: regular sampling, and dense

Attributes: irregular samplling
(can be adaptive), and sparse 

GPU rendering of a Mesh
in a nutshell  (reminder)

 Load…
 store all data on GPU RAM

 Geometry + Attributes
 Connectivity
 Textures
 Shaders
 Parameters / Settings

 …and Fire!
 send the command: “do it” !

THE MESH ASSET

THE  “MATERIAL” ASSET

8

9



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 5

Signals stored in textures 
(in games)

 Each texel = a base-color (components: r,g,b)
 The texture sheet is a “diffuse-map” / “color-map” / “RGB-map”

 Each texel = a transparency factor (components: α)
 The texture sheet is a “alpha-map” or “cutout-texture” (exp. if 1bit)

 Each texel = a normal (versor, with components: x,y,z)
 The texture sheet is a “normal-map” or “bump-map”

 Each texel = a specular coefficient value
 The texture sheet is a “specular-map”

 Each texel = a glossiness value
 The texture sheet is a “glossiness-map”

 Each texel = a baked lighting value...
 The texture sheet is a (baked) “light-map”

 Each texel = a distance from a surface value
 The texture sheet is a “displacement map” or “height texture”

Example (color-map)

+ =

10

11



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 6

Texture maps assets
and Mesh assets

 Several texture «sheets» associated to a mesh
 or also: more meshes on the same sheet (bene)

 Typical structure :
 each mesh associated to a material
 each material:

 1 sheet di diffuse-map
 1 sheet bumpmap (if needed)
 1 sheet di alphamap (if needed)
 1 vertex shaders + fragment shader
 Several parameters

 (e.g., shininess, …)
 If different parts of mesh associated to different textures: 

decompose the object in sub-mesh

Texture maps assets
and Mesh assets

 Not necessarly 1:1
 1:N -- several textures «sheets» associated to a mesh
 N:1 – more meshes on the same sheet (goof)
 If different part of mesh associated to different textures: 

decompose the object into sub-mesh 

MATERIAL
A

MESH 
B

MESH 
A

TEXTURE 
SHEET 1

(NORMAL MAP)

TEXTURE 
SHEET 2

(COLORMAP)

12

13



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 7

MIP map levels

 Pre-filtering of textures
 LOD pyramid, for images
 Hardware picks the right level (for each screen pixel)
 Avoids subsampling artifacts

1024x1024

512x512

256x256

1x1

Texture maps as assets:
characteristics

 Size:
 resolution
 channels (1,2,3,4)

 MIP-map levels 
 are they present?
 how many

 Compression?
 e.g., color quantization (“color-map” or “palette”)
 compression schemas designed specifically for textures

such as: DXT1-5 (DirectX Texture – Microsoft)

HW imposed constraints:
 Power of 2 for side (U and V)

 e.g.: 256x256 or 1024x512
 not a strict requirement 

any longer (for modern APIs)

 Hard-wired upper-bounds
 today: 8K, 4K, or even just 2K

14

15



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 8

Most of the visual richness
perceived in the typical 
videogame is due to textures!

Texture resolution
has a bigger impact impact on 
quality than Meshes resolution!

How do we define
how a given texture is mapped
over a given mesh?

?

16

17



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 9

How is a texture mapped over a 
given mesh?
 3D Models 

i.e. tri-meshes with:
 per vertex attrib 

 normals, color, AO, …

 LODs
 uv-map
 keyframes

 cyclic animations
 face-morphs, …

 “skinning”

 Materials
 lighting model stats / flags
 textures

 RGB maps
 normal maps
 alpha maps …

 shaders
 vertex, fragments, …

 Animations
 blend shapes
 skeletal animations
 kinematic animations
 geometry caches

 skeletons (rigs)

 Geometric proxies
 hit-boxes
 bounding objects
 AI-meshes

 Particle systems

 Environments
 3d scenes
 skydomes
 env. maps
 scene props

UV-Map of a mesh

 A mapping : 
mesh surface 2D texture space
 Aka

 It is stored as per vertex attribute : 
The «(u,v) position» (or «texture coordinate»)
of that vertex

 The set of UV positions is called the
 The «u-v map» of the mesh
 Or its «parametrization» (in Geometry Processing)

[0..1]2

18

19



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 10

Mesh as buffers
(tables in GPU ram)

W3:W2:W1:Tri:

T0

T1

T2

T3

T4

T5

T6

T7

…………………………TvTuNzNyNxZYXvert

V0

V1

V2

V3

V4

VERTEX BUFFER

INDEX BUFFER

th
e 

ge
om

et
ry

no
rm

al
s

th
e 

co
nn

ec
tiv

ity

th
e 

U
V-

m
ap

…

Texture space notation

Texture 2D

Texture Space (or “parametric space" or "u-v space")

Texture Space = [0,1] x [0,1]

eg: 512 texels

e.g.: 1024 texels

1.0

1.0

u

v

20

21



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 11

1.0

1.0

u

1.0

1.0

u

Note: Texture space independent from 
texture resolution (or aspect ratio)

Texture 2D
1024x512

128x64

Convenient!
We can reduce 
texture-sheet 
resolution
(balancing quality / 
memory) 
without affecting the 
UV-map of the mesh.

E.g.: load in GPU RAM 
only a few smaller
MIP-map levels

Two notations

s-t
(es OpenGL)

s

t

1.0

1.0 u

v

1.0

1.0

u-v
(es DirectX)

(0,0)

(0,0)

Most used
(in game industry)

Most used
(in game industry)

22

23



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 12

Modeling task:
u-v map construction

Texture “atlas”
(composed of  

several “charts”)

u

v

UV map:
example

MESH TEXTURE SPACE

…

u

v
N = A

A N

B

B C
C

(vertex seam)

M
M

24

25



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 13

Texture seams
(or just texture “cuts”)

 Texture seams are necessary
to encode the UV-map

Wedge 3:Wedge 2:Wedge 1:Tri:

410T0

024T1

635T2

…VUZYX

…𝑣𝟎𝑢𝟎𝑝𝑧𝟎𝑝𝑦𝟎𝑝𝑥𝟎V0
…𝑣𝟏𝑢𝟏𝑝𝑧𝟏𝑝𝑦𝟏𝑝𝑥𝟏V1
…𝑣𝟐𝑢𝟐𝑝𝑧𝟐𝑝𝑦𝟐𝑝𝑥𝟐V2
…𝑣𝟑𝑢𝟑V3
…𝑣𝟒𝑢𝟒𝑝𝑧𝟑𝑝𝑦𝟑𝑝𝑥𝟑V4
…𝑣𝟓𝑢𝟓V5
…𝑣𝟔𝑢𝟔𝑝𝑧𝟒𝑝𝑦𝟒𝑝𝑥𝟒V6

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

s a m e a s

s a m e a s

«Atlas» UV-map

A (very common) class of UV-map
 The mesh is split into “patches” (set of polygons)
 Each patch is mapped to a separate “island” in UV space
 Island are packed in the texture rectangle
 In this setup, 

texture seam = any mesh edge separating two faces
of two different patches.

 Sometimes, islands are 
distributed in >1 textures

27

29



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 14

Constructing a UV-map for a mesh
(or, «UV-mapping» a mesh)

 Typical task of the modeler (digital artists)
 (semi-)automatic algorithms are deeply studied

 We need to find a spot in the (2D) texture space 
for each (3D) mesh triangle

 Similar to peeling an apple: 
 Cut the skin of the apple (cutting phase)
 Lay each produced peel in 2D (unfolding phase)
 Pack the peels inside a rectangular space (packing part)

 Cuts (aka “texture seams”) are (almost) always required! 
 they are discontinuity of u,v attributes
 stored in the mesh as vertex-seams (vertex duplications)

Modeling task:
“u-v mapping” (verb)

 The modeler..:
 1. selects of the cutting edge 

…or…
1. assigns faces to texture “charts”
 either way, they decide where “texture seams” are

 2. unfolding
 minimizing “distortion” (by automatic algorithms)

 3. charts packing (again, often automatized)
 Minimize the empty space in textures
 Assign areas according to necessities

(important areas bigger texture space)
(the distribution of the texels becomes adaptive!)

See
DEMO

30

31



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 15

Two types of UV-maps

 NOT injective UV map
 Different zones of the mesh can be mapped to the same

texture region
 e.g.: charts of an atlas are overlapping
  optimization of texture RAM

 Can exploit of simmetries / repetitions

 Injective UV map
 1 (non-empty) point on the texture =

1 point on the mesh
 non-overlapping charts! (& no self-overlap)
  Generality / Flexibility

 Used for several scopes (e.g., light-baking)

 Different objectives
 both may be present
 2 distinct attributes (UVA , UVB) for each vertex

Q: which is the type of 
the UV-maps shown in 
prev slides?

aka: “unwrapping”
or “unwrapped UVs”

or “1:1 UV-map”
or “lightmap” UV-map

or “non-overlapping” UV-map

aka: just “UV-map” 
(the standard)

Tileable Textures

AA

B

B

32

33



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 16

Tileable textures

0 1 2

1

0.5 1.5 2.5

0.5

-0.5

-0.5 𝑢

𝑣

Tileable textures

 Many uses

Very space-efficient (in VRAM too!)

36

37



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 17

Texture
Sheet

LOAD

Life of a Texture
in a Game Engine

DISK CENTRAL RAM GPU RAM

Image
Object

IMPORT

Image
File

the same as, basically, 
any 3D assets

Texture Sheets
(in GPU RAM)

 Rasterized images, but with peculiarities …
 MIP-map levels
 channels per texel: 1,2,3, or (most typically) 4
 bits per channels: 

usually 8, fixed point
floating textures supported

 compression: specific texture schemas (see next)
 resolution: powers of 2 per side

38

39



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 18

Per-fragment Texture fetch
(during rendering, hardwired in GPU)

 Hard-wired GPU mechanisms to access the 
texture image at a given location: 𝑢, 𝑣 → ℝସ

 Includes many steps (per pixel!):
1. Management of out-of-bound coordinates.

E.g., repeat mode:   𝑢 ← 𝑢 and   𝑣 ← 𝑣

2. De-normalization of coords, from normalized  [0. . 1]2
to texel coord  [0. . 𝑟𝑒𝑠𝑋] × [0. . 𝑟𝑒𝑠𝑌]

3. Selection of the appropriate MIP-map level (how?)
4. On-the-fly decompression of compressed image data
5. Bilinear interpolation between 4 texels,

plus linear across MIP-map levels

number of
channels

Texture compression
(to save GPU RAM)

 Save RAM, but preserve the
random-accessibility of texels
 color quantization

 e.g., 5 red 5 green 5 blue 1 alpha  = 16 bits per texel

 color-table, or “palette”
 e.g., 256 color table for texture, an 8-bit index per texel

 specialized image-compression schemas. They are:
 Lossy (very much so) 
 Fixed compression rates (e.g. ¼)
 Unfavorable compression/loss ratio 
 Most diffuse scheme S3TC, with variants: DXT-1  -2  -3  -4 -5

yes/no 
alphas uniform

alphas
smooth
alphas

40

41



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 19

Textures as assets:
file formats

For generic images
(decompress the entire image 
before accessing any pixels)

 compression: excellent
 loading: heavy

 Decompress from RAM,  
(maybe) recompress in 
GPU-RAM

MIP-map levels: 
Procedurally generated.
Control by the engine

 Resolution: any

For textures
(random accessibility to texels, without 
uncompressing the entire image)

 compression: bad
 loading: light

 direct streaming possible
Disc => RAM => 
GPU RAM

MIP-map levels:
Baked.
Control by the artist

 Resolution: sometimes, 
must be a pow of 2

Textures as assets:
file formats
For generic images:

 .JPG / .JPEG
 lossy, 
 good compression rate
 “photographic” images: best
 only 3 channels (no choice)
 8 bit per channel (no choice)

 .PNG
 lossless
 compression ratio (for natural images)
 good for artificial images (logos)
 alpha channel: also possible 
 16bits: possible

 .TIFF  e .RAW (rare)

 lossless
 no compression
max flexibility for channels, image depth

 .PNM (rarer, but useful for toy projects)

 compression: verbose
 Very easy parsing! (no lib needed)

Specialized for textures:
 .DDS («direct draw surface»)

same format used in GPU. 
Verbatim copy of data
as it will be in GPU RAM
Thus:
 includes MIPmap levels (if needed)
 compression: very lossy 

And bad compression rate
(and fixed)

 GPU ready!
Just read from disk &
load on GPU memory
(no decompress / recompress!)

42

43



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 20

Type of textures
 Each texel is a base-color (components: r,g,b)

 The texture is called a “diffuse-map” / “color-map” / “RGB-map”
 Each texel is a transparency factor (components: α)

 The texture is called a “alpha-map” or “cutout-texture” (exp. if 1bit)
 Each texel is a normal (versor, with components: x,y,z)

 The texture is called a “normal-map” or “bump-map”
 Each texel is a specular coefficient value

 The texture is called a “specular-map”
 Each texel contains a glossiness value

 The texture is called a “glossiness-map”
 Each texel is a baked lighting value...

 The texture is called a (baked) “light-map”
 Each texel stores a distance from a surface value

 The texture is called a “displacement map” or “height texture”

Let’s see typical use examples 

Cutout textures example
texels = transparency level (0 or 1)

Alpha Map
(256x256)

Diffuse Map
(512x512)

Mesh
(667 tris)

44

45



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 21

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: drapes, beard...

by Micheal 
Filipowski
2004

Texture
(RGBA, 4 channels)

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: trees, foliage

46

47



3D Video Games                                   
09: Textures in 3D games                             
Part 1

2024-05-02

Marco Tarini                                  
Università degli studi di Milano 22

Texture mapping and Alpha Test

 Eg: fur, fur coats
The texture
(horizontally
tileable)
Pink is 
transparent

Next lecture: Bump-Map (*)

Any texture modelling geometric shape details 
(that is, high-frequency geometric features) 
 details not represented by the “real” geometry (the mesh)
 remember: meshes tend to be low-poly

 not much detail in them
 this approach is also known as “Texture-for-Geometry”
 rationale: 

texels are cheaper to render/store than vertices!
 geometric details may extrude out or be engraved in

the “real” (mesh) surface
 in many cases: the detail affects lighting only

 sufficient to trick the eye
 especially with dynamic lighting

(*) This terminology not universal:   e.g., «bump-map» can mean just «displacement map»

48

49


