
3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

computer
animation

(ASSETS) (PHYSIC ENGINE / ETC)

Animations in games

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Ragdolling Inverse
kinematics

(general)
soft-body
simulation

usually
too expensive

Cloth/
garments

Ropes

Kinematic
Animations

60

61

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 2

Scene-graph

Ta
Tb

Ta0 Ta1 Ta2 Ta3

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Tc

Animated Scene-raph…
(a “kinematic” animation)

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

t4t3t2t1t0Time:

TR4TR3TR2TR1TR0Trasform:

Ta
Tb

Ta0 Ta1 Ta2 Ta3

62

63

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 3

Animated Scene-graphs…
(“kinematic” animations)

 Given a scene-graph, a simple way to animate it:
 keyframe = the definition of local transformations Ti

(for each moving part)
 Storing a keyframe: storing all local transformation

(or: produce them as a function of time with a simple script)
 Note: often it’s enough to only redefine the rotation parts.

Translation and scaling are often the same across all key-frames.
 Interpolated frames: (in-betweens)

interpolate all local transformation between two keyframes
 Applying a frame: derive the global transformation, as usual

and apply them to nodes (aka: direct kinematics)
 Crucially: first we interpolate local transformations,

then we cumulate them into the global transformations
(this makes keyframe interpolation very expressive: able to interpolate
between any two keyframe with good results)

Keyframe interpolation
(for kinematic animations)

time A = 100ms

time B = 200ms

time curr. = 150ms?
keyframe A

keyframe B

TA

TB

Ti = ?

in-between

* Ti = mix(TA, TB, 0.5)

*

64

67

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 4

Step by step…

Kinematic animations

world space

wheel-B
space

car
space

wheel-A
space

car
space

at ଴

at ଵ

Step by Step…

Kinematic animatios

TA

TB TC TD TE

positioning of
car

(w.r.t. the world)

positioning.
of wheel A
(w.r.t. car1)

world
space

ca
r1

ob
je

ct
sp

ac
e

w
he

el
1.

1
ob

je
ct

sp
ac

e

transformations

TETDTCTBTA

Status of the car:

68

69

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 5

Step by Step…

Kinematic animatios

TA

TB TC TD TE

positioning of
car

(w.r.t. the world)

positioning.
of wheel A
(w.r.t. car1)

world
space

ca
r1

ob
je

ct
sp

ac
e

w
he

el
1.

1
ob

je
ct

sp
ac

e

transformationstime

T0,ET0,DT0,CT0,BT0,At0

T1,ET1,DT1,CT1,BT1,At1

T2,ET2,DT2,CT2,BT2,At2

T3,ET3,DT3,CT3,BT3,At3

Animation of the car:

a keyframe

Interpolating keyframes
(applies to all kinds of asset animations)

 Keyframes
+
in-betweens (interpolation)

keyframe A keyframe B
0.5 ∙ keyframe A

+
0.5 ∙ keyframe B

70

71

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 6

Animations in games
(of 3D Solid Objects)

ProceduralDesigned / scripted

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Ragdolling Inverse
kinematics

(general)
soft body
simulation

usually
too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

Kinematic
animations

An animated
robot… T

T0

T1
T2

T4 T6

Robot
(pelvis)

world
space

spine1

left
thigh

right
thigh

right
shoulder

left
shoulder

right calf
spine2

T3

T7

right
foot

T8T5

neck

bones

“root” bone

Local tranformf
(“from foot to calf”)

Gobal transform
(“from foot to robot”) is:

T2 ∘ T7 ∘ T8

72

73

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 7

Step by step…

From a bunch of robot pieces…

 So far: one mesh in each “bone”
 (e.g., car, wheel)

 That works well, for simple structures
 like a car, a windmill…

 What about a humanoid “robot” with 25-60 “bones”?
 Individual meshes for arms, forearms, legs…

three meshes for each finger?
 Possible, but…

 inefficient to render (lots of “draw calls”)
 uneasy to manage (lots of files?)
 a nightmare to design / author

(“sculpt me a nice looking calf”)
 and… looks right only for robots (each part is rigid!)

… to articulated models…

 Idea: one mesh, but skinned
 1 mesh per the entire character
 a new attribute per vertex: index of bone
 the 3D model can now be animated!

 Orthogonality models / animations!
 that is:

 one skinned mesh: runs with any animations
 one skeletal animation: can be appliecable to any model

 (as long as they use the same skeleton)
 500 models + 500 animations = 1000 things in GPU RAM

 not: 500x500 combinations

 The tasks required from digital artists:
 “rigging”: define the skeleton (the rig) inside the mesh (by riggers)
 “skinning”: define vertex-to-bone links, i.e. the skinning (by skinners)
 “animation”: define the actual animations (by animators)

“Skinning”
of the mesh

(1st version).

74

75

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 8

Skeleton (or rig):
data structure 1/2

 A tree of bones
 bone:
 Vectorial frame (space) used to express

pieces of the animated model
 eg, for a humanoid: forearm, calf, pelvis, …
 (animation bones != biological bones)

 Space of the root bone =(def)= object space
(of the entire character)

 How many bones in a skeleton of a humanoid:
at least: 22-24 (typically)
reasonable: ~40 bones.
very high: few 100s

Skeleton (or rig):
data structure 2/2

1. Hierarchy (tree) of bones
 a root bone on top

2. A special pose «rest pose»
 3D models are to be

modelled in this pose
 also: «T-pose», «T-stance»,
 same reason why T-shirts are called T-shirts ;)

 also: «A-pose», when arms are bent down

76

77

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 9

Pose:
data structure

One transformation
for each bone i
 Local transform: (of bone i)

 from: space of one i
 to: space of bone father of i

often, only the
rotation

component

(“fixed length bones”:
translations defined

once and for all
by the skeleton)

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
legleft

leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

pose Xrest pose

78

79

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 10

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
legleft

leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

final trans for foot, from rest pose to pose X = P2 ∘ P7 ∘ P8 ∘ (R2 ∘ R7 ∘ R8)-1 = P2 ∘ P7 ∘ P8 ∘ (R8)-1 ∘ (R7)-1 ∘ (R2)-1

pose Xrest pose

same assame assame as

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
legleft

leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

final trans for the spine, from rest pose to pose X = P1 ∘ P3 ∘ (R1 ∘ R3)-1 = P1 ∘ P3 ∘ (R3)-1 ∘(R1)-1

pose Xrest pose

same assame assame as

80

81

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 11

Bone transforms in a pose.
E.g. for «right foot» bone:

 Local Transform: P8

 from «right foot» to «right lower leg»
 Global Transform: P2 P7 P8

 from «right foot» space to «character» space
 uses the Hierarchy of the Skeleton

 once computed, skeleton hierarchy no longer needed

 Final Transform: P2 P7 P8 R8-1 R7-1 R2-1

 from «character» space in rest pose
to «character» space in dest. pose

 uses the Rest Pose of the Skeleton (R1 … RN)
 once this is computed, Rest Pose is no longer needed

the local frame
of the character,
which is the frame of
the root bone

mesh (vertices normals…)
is defined in this space!

𝑥

𝑧

𝑦

𝑥

𝑧

𝑦

The Final Transform
(defined per bone, for a pose)

Object Space
(mesh vertices are defined here, in Rest pose)

Still Object Space
but in the given pose

T୦ୣୟୢ

T୦ୟ୬ୢ_୐

T୤୭୭୲_ୖ

82

83

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 12

Pose (for a given rig) :
data structure
 pose = array of (local) transforms

 it’s defined for one given skeleton
 RAM cost: n_bones x bytes_for_a_tranform

Trasform[i]Bone i

L[0]#0 (pelvis) [root]

L[1]#1 (spine)

L[2]#2 (chest)

L[3]#3 (shoulder sx)

……

L[10]#10 (calf)

……

Local Transform
It includes:
• a Rotation: always!
• a Translation: maybe

If not, use the one defined in the
rest pose of the skeleton.
==> a pose cannot
redefine bone lengths.

• a Scaling: usually not
A joint cannot enlarge a part
of the character

Pose (for a given skeleton) :
data structure in GPU
 pose = array of final transforms

 it’s defined for one given skeleton

 RAM cost: n_bones × bytes_for_a_tranform

Trasform[i]Bone i

F[0]#0 (pelvis) [root]

F[1]#1 (spine)

F[2]#2 (chest)

F[3]#3 (shoulder sx)

……

F[10]#10 (calf)

……

computed in preprocessing e.g. as:
L[2] ∘ L[7] ∘ (R[7])-1 ∘(R[2])-1

final transforms

local transforms
of this pose

local transforms
of rest pose

84

85

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 13

Skeletal Animation :
data structure (CPU or GPU)

 1D Array of poses (1 pose = 1 keyframe)

 RAM cost:
(num keyframes) × (num bones) × (transform size)

 Each pose assigned to time dt
 delta from start of animation t0

 Sometime, looped
 interpolation 1st keyframe with last

Step by step…

From a bunch of pieces…
 one separate mesh in each “bone”
 “calf” mesh, “head” mesh, “right-forearm” mesh…

… to a single articulated model…
 1 “skinned” mesh for the entire character
 in each vertex, an index of a bone

 a vertex-bone link

86

87

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 14

… to articultated
defomable models.

 Idea: link each vertex to multiple bones
 each linked bone with a strength (a weight)
 this is called a «blend» skinning

 Transform of the vertex:
 interpolation of the final transformations

associated to the linked bones
 weights of the interpolation: defined per-verex

 Data structures: per-vertex attributes
 store:

 [bone index , weight] × Nmax

 (typically, Nmax = 4 or 2, see later)

the “Skinning”
of the mesh
blended version
(the one which is
actually used in

games)

Skeletons (rigs)
and Skinned Meshes

Skeleton (or rig)
the hierarchical structures of bones
the rest pose transformations (per bone)

Skinned mesh
a mesh with link-to-bones stored
as a (per-vertex) attributes

88

89

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 15

(this story actually happened)

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2003)(1999)

(this story actually happened)

Tekken - 1994 Tekken 2 - 1995 Tekken 3 - 1997

Tekken 5 - 2004 Tekken 6 - 2007Tekken 4 - 2001

90

91

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 16

(this story actually happened)

Tekken - 1994 Tekken 2 - 1995 Tekken 3 - 1997

Tekken 5 - 2004 Tekken 6 - 2007Tekken 4 - 2001

Skinned Mesh:
data structure

 A Mesh with a skinning
 A per vertex attribute
 Stored per vertex:
 [bone index , weight] x Nmax

 example:

WeightBone Index

0.49 (Spine B)

0.113 (Chest)

0.415 (Shoulder Right)

0.116 (Forearm Right)

Vertex 134
bone links

92

94

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 17

Mesh as buffers
(tables in GPU ram)

W2:W1:W0:tri:

T0

T1

T2

T3

T4

T5

…

……Bw3Bw2Bw1Bw0Bi3Bi2Bi1Bi0TvTuNzNyNxPzPyPxvert

V0

V1

V2

V3

V4

VERTEX BUFFER (Geometry + Attributes)

INDEX BUFFER

th
e

m
es

h

ge
om

et
ry

th
e

no
rm

al
s

th
e

co
nn

ec
tiv

ity

th
e

U
V-

m
ap the mesh

skinning …

vertex positions vertex normals
texture
coords bone indices bone weights etc…

N_max = How many bone links
for each vertex

 It’s a call of the Game engine!
 typical used value:
 1 (non-blended skinning) (bonus: no need to store weights)
 2 (cheap, e.g., for mobile games)
 4 (top quality – standard)
 more: never in games (currently)

 Can one lower Nmax ?
 yes, in preprocessing
 e.g., task for a game tool
 e.g.: Unity does this during skinned mesh import

(if asked to)

95

96

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 18

(but why put a hard-wired bound
on the number of bone links?)

 Reduces performance cost
 Nmax tranforms need be interpolated in GPU
 in vertex shader

 GPU = no good at control:
 always uses exactly Nmax trasf
 unused bones: weight = 0

 Reduces VRAM footprint
 reduces storage
 fixed length arrays: good for GPU
 Nmax (index,weight) pairs
 even where fewer are locally needed

(e.g., if 1 bone, weight is automatically 1)

WeightBone Index

1.09 (Head)

0.0--

0.0--

0.0--

example:

Skinning - how it works (in GPU)

To render a mesh…
 Load…
 make sure all data is ready in GPU RAM
 Geometry + Attributes
 Connectivity
 Pose:

final transforms per bone
 Textures
 Shaders
 Material Parameters…

 …and Fire!
 issue the Draw Call

THE MESH ASSET

THE MATERIAL ASSET

THE ANIMATION (current frame)

includes skinning (bone weights)

97

98

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 19

Skinning - how it works (in GPU)

model
in rest pose

a vertex
(in rest pose) ෍ 𝑤𝑖 = 1

final
transform:

𝐓a

𝐓b

𝐓c

𝐓d

…

…

bone
weight

bone
index

𝑤0bone a

𝑤1bone b

𝑤2bone c

𝑤3bone dx
ve

rt
ex

 s
ki

nn
in

g

blend

target
pose

Skinning - how it works (in GPU)

deformed
model

vertex
(in dest pose)

ᇱ

ᇱ

model
in rest pose

a vertex
(in rest pose)

target
pose

99

100

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 20

Real time Skinning
done in GPU, at rendering time (in the vertex shader)

+ =

skinned
model
(asset)

skeletal
animation

(asset)

animated
model

+ =

on
screen

but not in VRAM!
(unless you want to

bake it of course)

in
VRAM

in
VRAM

cheap: one transform
per Bone (per pose)

101

102

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 21

Current
Pose

The deformed mesh is computed
on-the-fly during rendering (not stored!)

V-RAM

Final
transf.

Skinned
Mesh

in T-shepe

CENTRAL RAM

Animation

Skeleton
+

Rest pose

Local
transf.

Rest
transf.

PREPROCESS

AT RENDER TIME

GPU real time Skinning – variants

Final
Transform

𝐓a

𝐓b

𝐓c

𝐓d

WeightBone

𝑤0bone a

𝑤1bone b

𝑤2bone c

𝑤3bone d

blend

(a choice of the rendering engine)

how are they stored? how is this done?

nothing else works! (that we know)

with dual-quaternion
interpolation

as a dual
quaternion

Solution 2:
«Dual Quaternion

Skinning»

with linear
matrix interpolation

as a 4x4 matrix
transformatiton

Solution 1:
«Linear Blend

Skinning»

103

104

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 22

Linear Blend Skinning (LBS)

𝐩ோ 𝐩௉

linear interpolation
of per-bone matrices
(no longer rigid)

skinning
(per vert
attribute):

(𝑏଴, 𝑤଴)
(𝑏ଵ, 𝑤ଵ)
(𝑏ଶ, 𝑤ଶ)
(𝑏ଷ, 𝑤ଷ)

𝐩௉ = ෍ 𝑤௜ T 𝑏௜

ଷ

௜ୀ଴

𝐩ோ

rest position
of the vertex

deformed
position
of the vertex

 = ෍ 𝑤௜ T 𝑏௜ 𝐩ோ

ଷ

௜ୀ଴

more in general, Nmax-1

interpolation
of per-bone
transformed points

Dual Quaternion Skinning (DQS)

𝐩ோ 𝐩௉

weighted interpolation
of DUAL QUATERNIONS

(see lecture on
quat and dual-quat)

skinning
(per vert
attribute):

(𝑏଴, 𝑤଴)
(𝑏ଵ, 𝑤ଵ)
(𝑏ଶ, 𝑤ଶ)
(𝑏ଷ, 𝑤ଷ)

𝐩௉ = mix(𝑤଴ , T 𝑏଴ , …) 𝐩ோ

rest position
of the vertex

deformed
position
of the vertex

Interpolated DUAL QUATERNION
(still a rigid transform)

Final transforms
(a rigid transform)

expressed as
a Dual Quaternion

105

106

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 23

Representations for roto-translations
(recap)

 Euler Angles
Angle + Axis
Quaternion

+ Transl.
(a vector)

 4×4 Matrix
(or 3×3 Matrix + Transl)

Dual Quaternion

Solution 1 (LBS)

Solution 2 (DQS)

see lecture on transform representation

Don’t
work

LBS: intuition on why it works

 If final transformations are expressed (and interpolated) as
affine matrices, then “everything is linear”:

 Interpolating the matrices (left of =) is equivalent to
interpolating the transformed points (right of =)
 Nothing can go wrong

 Problem: interpolation of rotation matrices does not
produce a rotation (as we know)
 Unwanted shears and down-scalings are introduced
 Therefore, LBS can “shrink” the object (a little bit)

(especially when rotations are very different)

෍ 𝑤௜ T 𝑏௜

ଷ

௜ୀ଴

𝐩ோ = ෍ 𝑤௜ T 𝑏௜ 𝐩ோ

ଷ

௜ୀ଴

107

108

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 24

DQS: intuition on why it works
(but storing translations and rotation separately wouldn’t)

 Problem with storing (and interpolating)
Rot. and Transl. of FINAL transforms separately:
 a final transf is a long sequence of “rotate-then-translate”
 it all boils down to a single roto-translation (as we know)
 to represent it, we must choose:

“which one goes first” (R then T, or, T then R)?
 Both choices are equivalent, in that they

let us express any roto-translation
 But different choices → very different interpolation results
 Usually, neither produces good results

 Dual quaternions bypass the problem
 The representation picks neither step to “go first”

Dual Quaternion Skinning (DQS)
VS

Linear Blend Skinning (LBS)
 LBS …

 Is a bit cheaper to compute
Can shrink surfaces a little
Example: “candy wrapper” effect ==>

 Ability to express (uniform) scaling in per-bone transformations
(local ones, therefore final ones)

 Is an older techinquie, more established
 DQS …

 costs some ~50% more FLOP operations per vertex
(depending on implementation details)

 Works better, avoids candy wrapper effects
 May have the opposite defect of enlarging the volumes.
 Can only express rigid motions (no per-bone scaling)

Both are used in practice.
They use the exact same set of ASSETS! (skinned mesh, skeletons, anims)

109

110

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 25

Keyframes and in-betweens
in a skeletal animation

 Poses in a skeletal animations can be easily mixed
(by blending local per-bone transforms <= this is the key!)

 This interpolation works very well:
very different key-frames can be blended with good results

 much superior interpolation power than, for example, blend-shapes!
 keyframes can be very far apart
 e.g.: decent walk-cycles with just 4 key-frames! (2 per step, mirrored)
 e.g.: decent attack animations with just 2 key-frames! (charge, discharge)
 (better results can always be obtained inserting new key-frames, as usual)

keyframe A keyframe B
0.5 ∙ keyframe A

+
0.5 ∙ keyframe B

Orthogonality
animation / models

RIG
(skeleton) Walk

Animation
Jump

Animation
Die

Animation

Model
A

Model
B

Model
C

114

115

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 26

Orthogonality animation / models

Orthogonality animation / models

116

117

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 27

Interpolation of poses
(that is, of keyframes of a skeletal ani)

 any two (or more) poses can be interpolated!

 as long as they are defined on the same rig
 mix is defined by interpolating the per-bone local transform
 this requires re-computation of final transforms

(after interpolation)

pose A pose B
mix(
pose A,
pose B,
0.5

)

Pose = keyframe

 Compress animations

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

0.25 A + 0.75 B

keyframe B

0.50 B + 0.50 C

keyframe C

animation
“walk”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

stored pose

Inbetween pose,
computed on the fly

118

119

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 28

The root is usually
an abstract
“basis” bone

pelvis

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3
P1

P0

basis
(root) custom

translations 𝐭0

here

basis

world

T

Character
space

𝐭0

Basis bone

basis basis basis

𝐭0

𝐭0 𝐭0

Each animation can include
a global translation 𝐭0 for each keyframe ,

as the translation of the top-most bone (hip bone  basis)
Normally, no other bone redefinines the translation defined in the rest pose!

keyframe 1 keyframe 2 keyframe 3

120

121

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 29

(recap) Skeletal animations:
3 types of Assets (data structures)

 Skeleton (or “rig”)
 Tree of bones
 Ɐ bone => reference frame (in rest pose)

 reference frame root bone = object space
 Skinned 3D Models
 Mesh with links: vertices => bones
 Ɐ vertex: attributes: [bone index , weights] x Nmax

 Skeletal animations
 Sequence of keyframe poses
 Ɐ pose, Ɐ bone = a local transform

examples of interchange formats (for all three):
 .SMD (Valve), .FBX (Autodesk), .BVH (“behaviour” Biovision)

Animation
GPU

Object

UPLOAD

Life of Animation Assets
in a Game Engine

DISK CENTRAL RAM V-RAM

Animation
Object

Skeleton

Final
Transforms

Local
Transforms

IMPORTAnimation
File

IMPORTSkeleton

Includes the Rest-Pose

122

123

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 30

Mesh
GPU

Object

Mesh
FileSkeleton

File

Mesh
GPU

Object

(Once again,
Memory Management)

Mesh
Object

Mesh
GPU

Object

Mesh
Object

GPU
Object

Mesh
Object

Mesh
ObjectMesh

ObjectMesh
ObjectMesh

ObjectAnimation
Object

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Skeleton
File

Animation
ObjectAnimation

Object

Mesh
FileSkeleton

FileSkeleton
Object

DISK CENTRAL RAM GPU RAM

Animation
GPU

Object

Animation asset on disk

…

= Walk
Animation

…Keyframe
3

Keyframe
2

Keyframe
1

tttttime

TTTT#0 (pelvis, root)

Bo
ne

TTTT#1 (spine)

TTTT#2 (chest)

TTTT#3 (shoulder sx)

……………

TTTT#10 (calf)

……………

124

126

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 31

Animation asset on disk (details)

…

rotations
and
translations

(often)
Rotations only.
(e.g., as Euler:
most compact)
Translations
are inherited
from
rest pose!

…Keyframe
3

Keyframe
2

Keyframe
1

tttttime

TTTT#0 (pelvis, root)

Bo
ne

TTTT#1 (spine)

TTTT#2 (chest)

TTTT#3 (shoulder sx)

……………

TTTT#10 (calf)

……………

Scalars or int
(e.g.: msec
since ani
started)

LOCAL
transforms

Animation asset on disk (details)

…Keyframe
3

Keyframe
2

Keyframe
1

tttttime

TTTT#0 (pelvis, root)

Bo
ne

TTTT#1 (spine)

TTTT#2 (chest)

TTTT#3 (shoulder sx)

……………

TTTT#10 (calf)

……………

Sparse
Representation!
(to save space)

Not store every
transformation
is stored:
(the other ones
are not stored
are interpolated
between prev
and next)

Sometimes
times are implicit
(if equally spaced)

: rotation + translationT

: rotation onlyT

: not stored (interpolated)T

127

128

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 32

Animation asset on disk (details)

Keyf
11

Keyf
10

Keyf
9

Keyf
8

Keyf
7

Keyf
6

Keyf
5

Keyf
4

Keyf
3

Keyf
2

Keyf
1

Keyf
0

tttttttttttttime

TTTTTTTTTTTT#0 (pelvis, root)

Bo
ne

TTTTTTTTTTTT#1 (spine)

TTTTTTTTTTTT#2 (chest)

TTTTTTTTTTTT#3 (shoulder sx)

…………………………………

TTTTTTTTTTTT#10 (calf)

…………………………………

rest
pose

walk
animation

(cycled)

run
animation

(cycled)

idle
animation

(cycled)

Many animations can be stored in the same file (e.g., a .BVH file)

Steps in the asset-creation pipeline:
Rigging & Skinning (of a 3D mesh)

Rigging – authoring of a rig
defining the skeleton
(often: also of the controls
to define poses for it)

Skinning – authoring of the skinning
“paint” of weighted links
between vertices and bones

129

130

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 33

Steps in the asset-creation pipeline:
Rigging & Skinning (of a 3D mesh)

 Rigging :
 define a skeleton

(with a rest pose)
 inside one mesh,

(or a set of meshes: a shared rig)
 also: define controls for animator

 Skinning (of a mesh):
 painting link vertex-bones

 Animation (of a rig)
 authoring of (skeletal) animations
 see later

rigger

skinner

animator

by
 D

ig
ita

l m
od

el
le

r
(h

el
pe

d
/ r

ep
la

ce
d

by
 a

ut
om

at
ic

al
go

rit
hm

s)

by
 D

iti
ga

l
an

im
at

or

Animation assets: a metaphor

the mesh

the skinning of the mesh

the rig

the animation

1

2

3

4

131

132

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 34

Pose = keyframe

 Compress animations

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

0.25 A + 0.75 B

keyframe B

0.50 B + 0.50 C

keyframe C

animation
“walk”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

stored pose

In-between pose,
computed on the fly

Dynamically combining
different animations

 Poses in a skeletal animations can be easily blended…
 As long as they share the same skeleton

 … so, entire animations can be combined into new animations!
 In real time, during game execution
 Remember results can always be baked,

and edited, during asset production

 Two ways to do combine animations:
 Transitions between two animations (or more)
 Compositing (layering) two animations (or more)

133

134

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 35

Interpolation of poses (at runtime):

transition between animations

 Eg: from stance to run

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

animation X
“walk”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

0.33 B + 0.67 C

keyframe C

t = 6

t = 7

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

0.50 E + 0.50 F

t = 0+k

t = 1+k

t = 2+k

t = 3+k

t = 4+k

t = 5+k0.25 E + 0.75 F

keyframe F t = 6+k

t = 7+k

delay (or offset)
k = 3

animation Y
“run”

keyframe E

0.80 X + 0.20 Y

0.60 X + 0.40 Y

0.40 X + 0.60 Y

0.20 X + 0.80 Y

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

0.33 B + 0.67 C

keyframe C

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

0.50 E + 0.50 F

keyframe E

Interpolation of poses (at runtime):

transition between animations

 Eg: from stance to run

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

animation X
“walk”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7 0.50 E + 0.50 F

t = 0+k

t = 1+k

t = 2+k

t = 3+k

t = 4+k

t = 5+k0.25 E + 0.75 F

keyframe F t = 6+k

t = 7+k

delay (or offset)
k = 3

animation Y
“run”

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

0.33 B + 0.67 C

keyframe C

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

keyframe E

some
transition
funciton

135

136

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 36

Interpolation of poses (at runtime):

transition between animations (notes)

 Transitions between animations
 E.g., from stance (aka “idle”) animation to walk
 E.g., from attack to parry
 Most typical example:

from a gait (run, trot, walk) to another

 The quality of the resulting transition varies
 E.g., on how similar the two interpolated frames are

(e.g.: do they both have the left leg in front?)
 Determining the good offsets / speed / transition

function can be a matter of trial and error
 E.g.: Unity has a WYSIWYG interface for that!

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Compositing (layering) poses
( and animations)

+ =
lower

joints

upper
joints

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Pose A Pose B New Pose

137

138

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 37

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Compositing (layering) poses
( and animations)

+ =
lower

joints

upper
joints

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

P1 = 0.45 ∙ + 0.55 ∙ P1 P1

also, interpolating, e.g.:

Pose A Pose B

Compositing (layering) poses
(notes)

 Useful in different contexts:
 e.g., different character parts following different anims
 e.g., lower body: run. Upper body: aims/shoots/reload

 Note:
local transformations are mixed (as usual).
Final transformations need be updated after mixing
 (after changing the local ones)

 Unity has an interface for this:
 Per-bone Layer = a mask of per-bone Booleans:

is the local animation of this bones “overwritten” by this
animation?

139

140

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 38

Inverse kinematic (IK)

 Intensively used in robotics

Forward kinematics:
«from angles (and dists) to (x,y)»

VS

Inverse kinematics:
«from (x,y) (and dists) to angles»

to learn more on
IK, see course on
→ Virtual Reality

Kinematics in skeleton animations

 Forward kinematics:
 “given local transforms

P1, P2… PN,
where does the foot go?”

 one solution

 Inverse kinematics
 “if I need the right foot to be

in pos p, how should I set
the local transforms
P1, P2… PN, ?”

 (under these constraints)
 0, 1, or ∞ solutions,

and not trivial

pelvis
(root)

spine 1

right
shoulder

left
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3
P7

right
foot

neck

P5 P8

P3
P1

you already know
how to find it!
It’s the computation
of final transforms

142

143

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 39

Forward Kinematic

find c (and b), given a, α, β, k, h

a c = ?

(b = ?)

k

α

β
h

Inverse Kinematic (IK)

find α, β (and b), given a, c, k, h

a c

(b = ?)

k

α = ?

β = ?

h

144

147

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 40

Inverse Kinematic (IK):
for any number of joints

solve for α , β , 𝛾 (and b, c), given a, d, k, h, j

a

(b = ?)

k

α = ?

β = ?

d

h

j

(c = ?)

𝛾 = ?

Inverse Kinematic (IK):
an ambiguity

solve for α, β (and b), given a, c, k, h

c
α'

β'

a

b'

150

151

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 41

Inverse Kinematic (IK):
an ambiguity

a c

α''

β''

b''

solve for α, β (and b), given a, c, k, h

Inverse Kinematic (IK) in 3D:
more ambiguities

solve for α, β (and b), given a, c, k, h

c

β

a

b

α

152

153

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 42

Uses of IK (Inverse Kinematic) :
in animation editing – or at run-time

 Direct kinematics
 Single solution exists
 An example is going from Local Transform to Final Transform

 Inverse Kinematics
 it’s more difficult to solve

(as it’s often the case with inverse problems!)
 Often, trivial solutions are all that we need in Games:

e.g., just two bones (for articulated legs, or arms)
 Multiple solutions exists: which one to pick?
 Disambiguate with additional constraint,

such as: minimize the distance from
the intermediate joint to a given “attractor” (a position)

Uses of IK (Inverse Kinematic) :
in animation editing – or at run-time

 Examples of uses:
 in preprocessing (helping the task of the animator)
 in real time (performed by the game engine)

 Examples of real-time uses:
 Exact positioning of character’s feet on ground
 Exact positioning of hand over object to be grabbed
 The two hands need to be joint
 e.g., if character wields a weapon with 2-hands
 e.g., making the system auto-correct for small changes in

bone lengths – helps animation retargeting
 e.g., auto-correct interpolated frames

 Helps attack animation “connect” with target

154

155

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 43

Producing skeletal animations (1/3):
procedurally

 Using physics simulation to control all bones
(known as “rag-dolling”)
 Computed by the physics engine during game execution
 (The results can always be baked during game design)
 (and possibly be re-edited by artist)

 How to: e.g. using Verlet simulation)
 Add a collider to most bones (not necessarily all)
 Add equidistance constraints to replicate the skeleton

structure (between connected bones)
 Plus, additional constraint on angles

(e.g. “please don’t bend keens backward”)
 Typical use: defunct / unconscious characters

Producing skeletal animations (1/3):
procedurally

 Using physics simulation to control
only a few bones (the “secondary” bones)
 The rest of the bones are still controlled by an

standard animation assets

 Examples of uses:
 “Hair bone” (the ones controlling character’s wig)
 “Cloth bones”

(the ones controlling loose pieces of garment)

 Result: whatever the character does, the wigs will
follow

156

157

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 44

Authoring / producing
skeletal animations (2/3)

 Manual keyframe editing

img by Blizzard Entratainement

Manual Keyframe editing

 Task performed by a digital animator
 The artist poses the character in every keyframe

 As usual for animations: using a timebar
 artist inserts / removes keyframes (where in-betweens look bad),
 author can edit the transition functions between them
 etc.

 A “rig” = set of GUI control to ease the task to pose individual
keyframes
 Task to construct the rig = rigging the model

 Rig is made of …
 the skeleton, rest pose included
 a set of constraint (e.g. knee don’t bend backward)
 the specification of a GUI
 IK mechanism (eg: artists positions the hands, positions the attractor for

the elbow. The IK produces the shoulder / wrist / elbow rotations)
 controls such as gaze direction (control eyeball bones)
 Sliders to control blend-shapes

(they can be used in conjunction with skeletal animations! see later)

158

159

3D Video Games
11: Animations 2 - Skeletal animations

2024-05-13

Marco Tarini
Università degli studi di Milano 45

Authoring / producing
skeletal animations (3/3)

 Motion capture
(“mocap”)

Motion capture

 Requires heavy setup (but cheaper/easier every year)

 Markers / suits
 Controlled cameras
 Studio
 Action must take space in a working space

 Requires skilled actors / performers / athletes
 Can be used to capture

 single animations (a football stunt, walking, running)
 joint performances by a group of actors (e.g. for cutscenes)

 Requires postprocessing (automatic or not)
 cleanups (often, substantial)
 Manual re-touces (e.g. adding animations for smaller bones, e.g.

fingers)
 extraction of keyframes (removal of in-betweens)

160

161

