3D Video Games

15: Rendering Techniques for games

Marco Tarini

3D Videogames
Universita degli Studi di Milano

Rendering in 3D games
Part I: lighting environments

Course Plan

lec. 1: Introduction @
lec. 2: Mathematics for 3D Games 00000 ®
lec. 3: Scene Graph @ For a more general,
lec. 4: Game 3D Physics @0 0® + @ deeper discussion
of many of the subjects
lec. 5: Game Particle Systems) of this lecture, see the courses
cG
lec. 6: Game 3D Models @4 «Computer Graphics»
lec. 7: Game Textures D@ and
_ RTGP
lec. 9: Game Materials ¢ «Real-Time
lec. 8 Game 3D Animations V@@ Graphics Programming»

lec. 10: 3D Audio for 3D Games @

lec. 11: Networking for 3D Games @

lec. 12: Artificial Intelligence for 3D Games .@
lec. 13: Rendering Technigues for 3D Games

Universita degli Studi di Milano

2024-05-30

3D Video Games
15: Rendering Techniques for games

One lighting equation...

repeat and sum for
each light
AL

The “ambient”

term
A

material parameter
light parameter

3D geometric data

3
Geometric Data
Material s“i\gb
properties @w\;gi‘mggﬁ
(data modelling %Lf,\r? %gv}al:ﬁi;
the «material»)
[lluminant
(data modelling
the Lighting
Environment)
Geometric data
(normal,
tangent dirs, the lighting
pos of viewer, etc) equation
1

Marco Tarini
Universita degli Studi di Milano

2024-05-30

3D Video Games

15: Rendering Techniques for games

Marco Tarini

The geometry in lighting: u,
normals...

e Per-vertex attribute of meshes, and/or per texel (normal maps)

... and tangent directions, ﬁ,
used for anisotropic materials

l n‘ .’ o)
(téngent spaée)'; e
requires tangent dirs

material:
requires tantent _dir

Al

Universita degli Studi di Milano

2024-05-30

3D Video Games

15: Rendering Techniques for games

Marco Tarini

View-dependent and/or anisotropic

materials / lighting models.

e Aview-dependent lighting equation (or material)
is one which uses the view direction ¥

e Consequence: its results cannot be backed! (why?)

e Q: which terms of the lighting equations seen above
are “view-dependent”?

e Otherwise, it’s view-independent

e An anisotropic lighting equation (or material)
is one which uses the tangent directions

e Simulates real-world materials such as: satin, velvet, fabric

e Otherwise, it’s isotropic

Materials / lighting models

<P
'%
=
'%%v
view-independent
(aka Lambertian)

<@
'%
gg %17
view-dependent
(for example, Phong)

light dir s

normal

view dir —

@

'é
TURN!

view-dependent,
anisotropic

Universita degli Studi di Milano

2024-05-30

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Next: modelling
the Light environment

Material gﬁ,)ﬁ‘g
parameters @V\g(ﬁ%\e
(data modelling ij;d? 22,}\%$
the «material»)

[lluminant

(data modelling
the Lighting
Environment)
Geometric data

(e.g. normal,

tangent dirs, (the lighting
pos viewer) equation)

Approaches to model
the light environment in 2D games

We are about to discuss three ways:

e Discrete

e a finite set of individual light sources
(including one global ambient factor for the “leftovers”)

e Densely sampled

e environment maps:
textures sampling incoming light

e Basis functions

e aspherical function stored as
spherical harmonics coefficients

(They can be, and are, used jointly)

10

Universita degli Studi di Milano

2024-05-30

3D Video Games 2024-05-30
15: Rendering Techniques for games

Discrete illumination environments: 053

a set of individual light sources

e a finite set of “light sources”...
e nottoo many (e.g. <16)
e if more, can be assigned “priorities” to pick a subset

e each light sits in a node of the scene-graph
e each light is of one type...

11
Types of discrete light sources ‘s.';n *
g\\ 19 ',
2S | aw
ambient light directional lights
AN

positional lights spot-lights

12

Marco Tarini
Universita degli Studi di Milano 6

3D Video Games

15: Rendering Techniques for games

Marco Tarini

2024-05-30
Discrete illumination environments 053
world
-'/T{T w
B C D
T3 ==
/ rT4 \ . \l'6
E 15
F
T7 & :
/ N ' G = _
L
13
Discrete illumination environment L
repeat and sum for the one
each discrete light source “ambient” light
B) - |
dr Ly SR Lr ar AR
@ L)|de |®(Le |+ (@ A)| 56 |®| Le |+| lag |®| Ac
dg Lg SB Ly ag Ap
nlerp(# , L ,0.5)
material parameter
light parameter
3D geometric data
14
7

Universita degli Studi di Milano

3D Video Games 2024-05-30
15: Rendering Techniques for games
.) 2
Types of discrete light sources : examples a -}l'ﬂ.
- |
ambient light directional lights
positional lights
(or point-lights) spot-lights
15
. .] P
Ambient light I/;,' Lo
e models other all minor light sources + bounces
e light incoming “from every direction at every position”
e examples:
e in an overcast outdoor scene: high
e (dim shadows, flat looking lighting:
every photographs’ favorite for portraits!)
e in realistic outer space: zero
e in any other scenes : something in between
(e.g., sunny day, or torch-lit cave)
e the lighting env includes only one (or zero)
lights of this type
18
Marco Tarini
Universita degli Studi di Milano 8

3D Video Games

15: Rendering Techniques for games

Marco Tarini

l‘ !
Distance fall-off functions W

(for positional lights & spotlights)

e The light intensity of positional lights and spotlights
can be dimmed down with distance from light-pos P;,
to the pos of the fragment being lit Pp,
scaling it by some positional «fall-off» function

fp(IIPL — Ppll)
o Inthe real physical world, fp(d) = 1/d?
e Other functions can be used, for example fp(d) = 1/d

farther:
less lit

- t/ closer:
PLF more lit @
19
. P
Angular fall-off functions RE
(for spotlights)
e For spotlights, the intensity is also dimmed down by
an «angular fall-off» function, when the direction of
the light emission E mismatches the light direction L ,
scaling it by some function
fD(_E' ¢ E)
e Forexample, fp(x) = 1/x10
T inside
% the light beam:
= more lit
2 outside
‘_Lﬂ the Iig:]t beam:
less lit
20

Universita degli Studi di Milano

2024-05-30

3D Video Games 2024-05-30
15: Rendering Techniques for games

Spot-lights: "‘-l,.,:-, Y
they can use a “cookie texture”

As an alternative to use angular fall-off functions

21
n N
In the lighting equation Cr
ene H.‘j |
repeat and sum for the one
each discrete light source “ambient” light
A A
0
dr Lg e[SR Lg ag AR
(A-L)|de|®(L |+ (@A~ H) | s6|® Le |+ ac |®| 4c
dg Lg SB Lg as Ap
parameter
= of the
light
- P, — Pp
L="————
P, — Pell
22

Marco Tarini
Universita degli Studi di Milano 10

3D Video Games
15: Rendering Techniques for games

L)
Ui P g |
LA

Ambient light

Directional light

Types of discrete lights (a summary)

Positional light

Spotlight

(nothing)

(assumed at infinite)

Direction (versor)

(assumed at infinite)

Position (point)

Position (point)
&
Direction (versor)

Falloff function

Falloff function

Angular falloff
function

“Cookie” texture

Ambient Occlusion
either baked
(per-vertex or per-texel)
or dynamically computed
(see SSAO later)

(usually) dynamically computed
(see shadow-map technique later)

Cast shadows

0-1

0-N

0-N

0-N

Color/Intensity (RGB value)
Priority?

23

the lighting?

In which space to compute

Marco Tarini

dr Lg o[SR Ly ag AR er
(ﬁ, f,) dG R\ Lg (ﬁ . ﬁ) Sg | Q| Lg |+ ag | Q| Ag |+ eg
dg Lg SB Lg ag Ap ep
3D Point / Vector / Versor
nlerp(¥ ,L , 0.5) Q: in which space to express them
i= PL— P (and the others like them)?

A: whichever!
As long as it’s the same space

24

Universita degli Studi di Milano

2024-05-30

11

3D Video Games

15: Rendering Techniques for games

In which space to compute
the lighting?

HERE?
ArEERIRY : .
///7’, A (easy light dir)

Miiitis
light air [World
Space

) HERE?
TO T1T (easy v. normals)

15

HERE?

(easy view dir)

LIGHT

space
light pos "' f

light pos

HERE!

(easy texture normals)

light pos & dir

25

In which space to compute
the lighting?

e All versors that used in the lighting equation
must be expressed in the same space

e view direction, light directions, half-way vector, normals, tangent dirs...

e Choice: which space to use?
e View space? (the space of the camera)
e World space?

for anisotropic materials

e Local object space? (the space of the object currently being rendered)

e With normal maps, usually the most efficient solution is:
e Use the same space the normals are expressed
e Fornormal stored as attribute: the Local Space (aka Object Space)
For Tangent Space normal maps: in the the TBN space. Then...
...all other versors must be transformed into this space, per vertex!
e ..the normals accessed from the texture can be used right away, per pixel!
This minimizes the amount of transformations needed

26

Marco Tarini
Universita degli Studi di Milano

2024-05-30

12

3D Video Games
15: Rendering Techniques for games

Discrete illumination environments
Summary

e Pros:

e simple to position / reorient individual light sources
e both at design phase, or dynamically (at game exec)

e good model of illuminants, such as:
e explosions (positional lights) main illuminants
e car lights (spot-lights lights) of the scene!
e sun direction (directional light)

e relatively easy to compute (hard, soft) shadows for them

e Cons:

e each light source requires extra processing ... for each pixel!
e therefore: hard limit on their number. Prioritize

e theydon’t model well:
e area light sources (e.g., from back-lit clouds)
e reflections on metal objects

see
shadow
map
later

e therefore: are often given a (physically unjustified) radius of effect

27

Densely sampled
illumination environments

e Alightintensity / color from each direction d

e Asset to store that:
“Environment map” texture

28

Marco Tarini
Universita degli Studi di Milano

2024-05-30

13

3D Video Games 2024-05-30
15: Rendering Techniques for games

Densely sampled 1
illumination environments ‘

e latitude/longitude format
(of a unit vector d)

29

Densely sampled
illumination environments

e Aka “sky-map” texture
e whenit’s only / predominantly the sky to be featured
e doubles as textures for “sky boxes”

N

Marco Tarini
Universita degli Studi di Milano 14

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Densely sampled
illumination environments

. unit vector
e Environment map: (asset))

a texture with a texel t for each direction d
o tstores the intensity/color of the light coming from direction d
e Q: how to determine u, v position of t for a given d ?
e i.e. how to parametrize (flatten) the unit sphere
e Different answers are possible...

g

latitude/longitude format mirror sphere cube-map format

format (ad-hoc HW support!)

31

Environment map (asset)

A texture with a texel t for each direction d

e tstores the light coming from direction d

e useful to compute reflections on (curved) metallic objects
e often HDR (see later)

Pro: realistic, complex, detailed, hi-freq, light env

e best for mirroring materials (such as metal, glass, water)
Pro: can be captured from reality
e see “mat-cap”

Con: expensive to update

for dynamic scenes

e no prob, for static environments only
Con: assume far away illuminants
e Not accurate for close illuminant

32

Universita degli Studi di Milano

2024-05-30

15

3D Video Games 2024-05-30
15: Rendering Techniques for games

Environment map (asset): uses

1. Reflection mapping
e metallic objects
e material roughness = mipmap level!

Roughness 0 Roughness 0.25 Roughness 0.5
MIPMAP O MIPMAP 1 MIPMAP 2

Environment map (asset): uses

1. Reflection mapping
e metallic objects
e material roughness = mipmap level!

2. More generally,
description of the lighting env

e for lighting computation

3. Coverage of the background

e e.g., as a texture covering the
3D “skybox” / “skydome” mesh

34

Marco Tarini
Universita degli Studi di Milano 16

3D Video Games

15: Rendering Techniques for games

Marco Tarini

2024-05-30

Skydome mesh i
lts transform:
e Centered at camera node
e QOriented as world node
Textured with:
e The environment map
35
Lighting env in the scene graph R
R
world
Env map
1o 7] W
B C D
T3
/ ’T4 _6
E 15
T i R
7 o ‘
/ iy 2 G
L) :
36

Universita degli Studi di Milano

17

3D Video Games
15: Rendering Techniques for games

Light environments:
using Basis Functions

e Lighting environment:
a continuous function f &)
e f (D) = amount of (rgb) light
coming from direction ¥
e Store f through basis functions

set of all unit vectors
(i.e., surface of the unit sphere)

—>]R«\

or R3if RGB
colored light

fixed spherical “basis” functions (always the same ones)

/ /

f@) =ago- foo@ +ay_1-fi1(D) + a0 fro® +apq1-fre(D) + -

N \ / /

a few scalar values to be stored, in order to represent (an approx. of) f

37

a set of functions

Spherical Harmonics (SpH):

falb -3 -2 -1 +2 +3
+1
0 [
0
-1
f2,42

39

Marco Tarini
Universita degli Studi di Milano

2024-05-30

18

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Spherical Harmonics (SpH):

a set of functions (a different visualization)

=

b
-3 -2 -1 0 +1 +2 +3
E)'O O
positive
o “ B negative

40

Spherical Harmonics (SpH):

a good choice for the basis functions

e Spherical Harmonics is a good set of basis functions for

spherical functions

the degree

e Each function in the set has two indices a, b

fap(@) with a >0, —a<b<+a
foo(P) =1 aconstant function
(so, scalar ag o represent the total amount of light)

all other basis function sum up to O 50, they control the distribution
(i.e., their integral over Q is zero) not the quantity, of light

they are designed to have useful mathematical properties
(e.g., orthogonality — the integral of the product of any two is 0)

all SpH functions are easy to compute, e.g. integrate, etc

41

Universita degli Studi di Milano

2024-05-30

19

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Light probes:

Light environment stored with SpH

(grayscale)
LIGHT ENV

stored, i.e., the representation of as Spherical Harmonics

@37% °+09 0—07 e+03 °+01 Q

f(U) foo ,— f1o f1+1 fz 2

]

fixed, immutable, closed form functions that are easy to compute and manipulate

fisstoredas (+0.5,+0.9, —0.7, +0.3, 0.1, ..)

(if it’s a colored Light Env, this is repeated for each R,G,B channel)

42

Light probes:
Light environment stored with SpH

Spherical Harmonics (SPH) in brief:

e store lllumination Env as a small number (4,9,16...) of scalar
weights of as many fixed spherical basis functions.

® Pros:
e very compact representation

e it models continuous functions well:
good for smooth lighting environments

e it allows for efficient computation of the Lighting equation
e it’'s easy to interpolate between light envs!
e Cons:

e continuous functions ONLY
e Not good for hi-freq details: for example, no hard lights
e not sudden variations (unless very many coefficient used)

e Good for soft light env

43

Universita degli Studi di Milano

2024-05-30

20

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Light probes
(position-dependent lighting env)

e Alight probe == a (precomputed) lighting env.
to be used around a given 3D position of the scene

e Light Probe lighting:

e preprocessing: disseminate the scene with light probes
e Store them as... low-res environment maps
e ..or, with SPH (the standard solution)

e atrendering time, for an object currently in pos (xyz),
use an interpolation of near-by “light probes”
e note: two (or more) SPH function can be interpolated!
e easy: just interpolate the weights

44

45

Light probes

Universita degli Studi di Milano

2024-05-30

21

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Light probes
(position-dependent lighting env)

46

GUIENCHA ||l umination-driven Light Probe Placement

2 oﬁz - K. Vardis' and A. A. Vasilakis' and G. Papaioannou
Department of Informatics, Athens University of Economics and Business
Light Probes. Our Method Results
Tnitial Light Probes

" Light probes help encode and represent global = Evaluation Points

Placement i typically performed as either an * Asimple and generic method
automatically laid-out grid or manually... &
Two-step algorithm
+ " Setup: Generate dense reference probes and supply light
Observations field evaluation points
+ simplification: ant prob
*+ Pacement shoukd depedon th ightig drbuton e L

Lighting setup A: Similar light source colors

+ Colour
+ Transform radiance to YCoCg and
. to weighted YCoCg
transitions companents for chrominance/luminance-based preference

e

Pacen
U Probes
<
-rh:u ol
- Radance Fd
L

mpication

Luminance-driven: 535 probes left

Lighting setup B: Contrasting light source colors

einer congrats

Vardis Thank you!

tzor -cavi P Q,\ﬂgm SOIHAVIDOUNT

Chrominance-drivens 45 probes left,

o ® Q080 V200080

1 Source code: github.com/cgauebl light_probe_placement
? b.

Yntigkidmards

Keynote O'Sullivan | Closing Session | Eurographics 2021

& Unlistea

Recently uploaded Watched

€ thatfast forward *is*

a7

Universita degli Studi di Milano

2024-05-30

22

3D Video Games
15: Rendering Techniques for games

Rendering in 3D games
Part Il: Common CG techniques in games

50

Part Il

e Basics of GPU-based rendering
a brief summary of rasterization based rendering

programmable parts of the pipeline

depth-maps
e double buffering
e Rendering techniques & tricks used in games

Multi-pass technigues in general

Deferred shading
Screen space techniques in general

A summary of a few common CG techniques

51

Marco Tarini
Universita degli Studi di Milano

2024-05-30

23

3D Video Games

15: Rendering Techniques for games

Marco Tarini

_l‘— !
Rendering task for in 3D games: S
overview
e Real time

e (20 o0r) 30 or 60 FPS
e Hardware (GPU) based
e pipelined, stream processing
e therefore: one class of algorithms (hardwired)
e rasterization based algorithm
e recent trend: switch to ray-tracing algorithms?
e Complexity:
e Linear with # of primitives

e Linear with # of pixels

52

. =

High-level view of mesh rendering Lo

To render a mesh:
e |oad in GPU RAM:

v Geometry + Attributes
. THE MESH ASSET
Connectivity

Textures

THE MATERIAL ASSET

v

v

v Vertex + Fragment Shaders
v Global Material Parameters
v

Rendering Settings
e issue the Draw-call

For this lecture, we need go lower level (a bit)

53

Universita degli Studi di Milano

2024-05-30

24

3D Video Games 2024-05-30
15: Rendering Techniques for games

Rendering of a mesh =
rasterization of all its triangles

56

GPU pipeline —
a simplified conceptual version

y
g 7 final
V1 o
Vo vertex . fragment RGB
vED D
V2
V2
: ’ 2D screen fi t
ragments
3D vertex triangle (“wannabe pixel”)
+
attributes
57

Marco Tarini
Universita degli Studi di Milano 25

3D Video Games

15: Rendering Techniques for games

Marco Tarini

p oy
Rasterization based rendering: i
steps (remarks 1/2)
e Vertex processor: (per vertex)
e Input: vertex data (position + initial attributes)
e Output: a final screen position,
and other (refined) attributes
e Rasterizer: (per triangle)
e Input: a triplet of processed vertex (with attributes)
e Output: many “fragment”, one for each pixel covered by the triangle,
each with interpolated attributes
e Fragment shader: (per fragment)
e Input: a fragment (with attributes)
e Output: afinal rgb color (plus: an alpha value, plus: a depth value)
e Output combiner: (per fragment)
e Writes the rgb color on the screen buffer
e Overwrites, blends, or preserves the old value
62
.-ll__, _
Rasterization based rendering: L
steps (remarks 2/2)
e It's a pipelined architecture:
every step works in parallel with all others
e E.g., while fragment are processed, the next triangle is
being rasterized, and the next vertices are processed
e It's a SIMD architecture:
Every step does the same processing on several
inputs, producing several output, all in parallel,
e E.g., several fragments are processed at the same time
(each one independently from the others)
e E.g., same for vertices
63

Universita degli Studi di Milano

2024-05-30

26

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Rasterization-Based Rendering

[HARD-WIRED in the GPU]

per per final
vertex tr|ang|e fragment pixels

2D triangle "fragments”
on screen
vert/ces
PROGRAMMABLE: PROGRAMMABLE:
a user-defined a user-defined
"Vertex Shader" "Fragment Shader"
(or “vertex program”) (or “pixel program”)
65

Rasterization based rendering:
what is computed in each step

e Per vertex:

the .
Vertex e shape-blending - interpolation of the current morphs
Shader [skinning - transform from rest pose to current pose (blending matrices)

L] projection - transform from object space to screen space

“® Per triangle: (rasterizer)
hard e back-face culling discard of back-facing triangles

wired e rasterization creation of fragments
e interpolation of per-vertex attributes «nota bene!

Per fragment:

[]
the L] texturing: accessing textures (including color, normal, alpha maps)
Fragment e lighting: from normal + lights + material to RGB
Shader L] aIpha—kiII: discard of (almost) fully transparent fragments

L] ng effect: pixels distant from the camera are blended with a “fog” color

wired

“® Per fragment: (output combiner)
hard o depth-test: occluded pixels are removed (often anticipated for performance)

° alpha—blend: semi-transparent fragments are mixed with background

66

Universita degli Studi di Milano

2024-05-30

27

3D Video Games

15: Rendering Techniques for games

Marco Tarini

GPU pipeline — bottlenecks er

(remarks and terminology)

e Like in any pipeline, the process goes as slow as its slowest stage
e i.e., the «bottleneck» of the pipeline determines the total speed
e Any other stage is idle for part of the time (which is always a waste)
e stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)
e stages after it are «starved» (they wait for input from previous stage)
e Bottleneck terminology: (in CG)
e |If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)
o If the bottleneck is per fragment, the app is fill-limited MORE COMMON
(«it cannot fill the screen buffer with pixel fast enough») CASE, FOR GAMES
e Performaces (rendering FPS) of a game only impoves
if computational load is removed from the bottleneck phase
Examples:
e using all meshes at LOD 2 instead of O does not help a fill-limited app
e reducing the resolution of the screen does not help a geometry-limited app
e using a simpler lighting model does not help a geometry-limited app
67
g
H Ju . L
In many game engines, G
" . ”
shaders are part of the “material asset
To render a mesh:
e |oad (in GPU RAM):
v Geometry + Attributes
. THE MESH ASSET
v Connectivity
v Textures
v Vertex + Fragment Shaders
. THE MATERIAL ASSET
v Global Material Parameters
v Rendering Settings
e issue the Draw-call
68

Universita degli Studi di Milano

2024-05-30

28

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Programming languages f""e;,;";.]
for writing shaders

e High level:
e HLSL (High Level Shader Language, Direct3D, Microsoft)
e GLSL (OpenGL Shading Language)
e CG (C for Graphics, Nvidia)
e PSSL (PlayStation, Sony)
e MSL (Metal, Apple)

e Low level:

e ARB Shader Program
(the “assembler” of GPU — now deprecated)

69

Depth buffer -H:,“
(or Z-buffer) (or depth-map) 2D aray

of RGB values

. . 1 of some
e Any rendering producing a screen-buffer .. .
resolution

e which is sent to the screen

e ..also produces a depth-buffer — a 2D array
of depth values

(scalarsin Oto 1)

of the
e it's used during the rendering to determine occlusions | ssme resolution

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it's covered by that something)

e asa by-product!
e not set to the screen: it’s an “offline” buffer

e see computer graphics course for more details

e many rendering algorithms exploit the depth-buffer
e for different uses

e for each pixel on the screen, we have not only its RGB value, but its depth
value (a scalar from 0 — close to the camera, to 1 —far from the camera)

70

Universita degli Studi di Milano

2024-05-30

29

3D Video Games 2024-05-30
15: Rendering Techniques for games

basics: Depth buffer L

screen

SCREEN BUFFER v AN
U T T——
o) |

transform rasterize texturing,

lighting, ...
DEPTH-BUFFER by-product

+ depth test

71

basics: Double Buffering

e To render a scene, all meshes are rendered succession

e Filling the screen buffer

e Double-buffering is a basic technique to prevent any
incomplete buffer to ever reach the screen
e E.g., arendering where some of the meshes is still not rendered

e How it works:
e We have two RGB buffers: the front-buffer and the back-buffer

e The front buffer shows the last complete rendering
and is the one the screen shows

e The back bufferis filled by the renderings, but it is not shown
(it's yet another example of “off-screen buffer”)

e Screen Swap: When the back buffer is ready, the two buffer are
swapped (instantaneously)

e Info about variants: look up what “V-sync” means in 3D games settings
e Observation: the depth-buffer needs not be doubled

72

Marco Tarini
Universita degli Studi di Milano 30

3D Video Games
15: Rendering Techniques for games

basics: Double Buffering

\d
SCREEN BUFFER A

Scene
(geometry)

SCREEN BUFFER B

73

basics: Double Buffering

P

Scene
(geometry)

SCREEN BUFFER A
ber

Ve
ertex m‘
"ange Per
fra
Y WiP

SCREEN BUFFER B

74

Marco Tarini
Universita degli Studi di Milano

2024-05-30

31

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Off-screen buffers ok

e The rendering produces a
screen buffer (2D array of RGB pixel)
that is sent to the screen
and is made visible to the player

e A buffers that is used internally but and not sent
to the screen is called an off-screen buffer
e The depth buffer (2D array of depth values)
e The back-screen buffer (double buffering techniques)

e Many rendering techniques are based on
producing then using an off-screen buffer

75

acceSS(_eS)

Texture access: it’s in the per ‘vg;lﬁ-
fragment process

“Render Target”

SCREEN
BUFFER

2o S i
vere QRN verde 4

V2

GEOMETRY

77

Universita degli Studi di Milano

2024-05-30

32

3D Video Games

15: Rendering Techniques for games

Marco Tarini

basics: Render to Texture
(multi-pass rendering)

“Render Target”

vo "
per per 1
E B . TEXTURE
GEOMETRY vertex . triangle
V2

other
accesses

TEXTURES

Vo W
R — per ® per SCREEN
vertex . triangle fragment BUFFER
V2

“Render Target”

79

Multipass rendering techniques
(a wide class of rendering techniques)

e 1t pass: fill an internal 2D buffer
e i.e, an “off-screen” buffer (a buffer never shown to the user)
e it's the output of this rendering, i.e. its “render target”

e by default, the render target is the “screen buffer”
(the buffer shown to the screen), but not in this case

e this mechanism is aka “render to texture”
e 2" pass: fill the final screen buffer
e using the just-computed off-screen buffer as a 2D texture

e Note: good for GPU because...

e the off-screen buffer is either only write-only (15t pass)
or read-only (29 pass). Never both!

e the off-screen buffer is constructed and used in GPU RAM.
No expensive swap of memory between CPU and GPU!

80

Universita degli Studi di Milano

2024-05-30

33

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Screen-Space techniques (in general)
(a class of multi-pass rendering techniques)

e 15t pass:

e Render the scene from the same point of view
as the final scene

e Produce: final color buffer, plus a z-buffer
(and/or other auxiliary buffers)

e 2" pass:

e render just one single “full screen” rectangle

e (it fills the entire screens with two triangles)

e for each produced fragment: apply 2D effects to the buffer
e Notes:

e Basically, it’s a way to apply “post-production” 2D image filters
after the rendering.

e Many of the techniques in these slides are in this category

82

1st PASS

2nd PASS

Example: metallic reflections
of dynamic scenes

Scene

per per per
vertex triangle /fragment

transform rasterize texturing,
lighting

(geometry)

Env-Map
(6 images)

transform rasterize texturing,
lighting
including
reflection
over _ '
metallic objects img by Tze-Yiu Ho

= Final
—
Scene per per per \ .‘_’.‘r\ B < crecn-Buffer
(geometry) vertex triangle /fragment iy y

84

Universita degli Studi di Milano

2024-05-30

34

3D Video Games

15: Rendering Techniques for games

Marco Tarini

° Deferred shading f aka Deferred rendering (inappropriate?)

e Which approach to use?
e Both are employed by games

e Basilar choice! Implementation of all other rendering
algorithms changes accordingly.

Main rendering algorithms: e
two classes of approaches
L Forward rendering aka Deferred lighting (actually, a variation)

85

Main rendering algorithmes:
two classes of approaches

e Forward rendering

Render Target

Scene

o) ‘
transform rasterize texturing, h
depth test, SCREEN BUFFER ‘ !
etc,
and Lighting

86

Universita degli Studi di Milano

2024-05-30

35

3D Video Games
15: Rendering Techniques for games

Main rendering algorithms:
two classes of approaches

aka Deferred lighting (actually, a variation)

e Deferred shading / aka Deferred rendering (inappropriate?)

(multiple) Render Targets (offscreen buffers)

ﬁ Scene per per per / N
; (geometry) vertex triangle /fragment ».
= transform rasterize texturing,
depth test normals diffuse colors depth
tc, “ ” buff
jncd L%g G-BUFFER ufter
& A singl
< single per
o full-scr
87
Deferred shading
e Advantage:
lighting is computed only actually visible pixels
e it's a huge saving if large depth complexity (aka overdraw)
and/or lighting complexity — both common in 3D games
e Disadvantage:
needs a separate buffer for every material parameter
(or, sometimes, a material index)
e Normal buffer
e Depth buffer
e Base color buffer
e Limits the range of materials?
e Disadvantage: not good for semi-transparencies
88

Marco Tarini
Universita degli Studi di Milano

2024-05-30

36

3D Video Games 2024-05-30
15: Rendering Techniques for games

Some rendering techniques popular
in games (we will see a few of them)

e Shadowing

o wimPCF
e shadow mapping

e Screen Space Ambient Occlusion
e Camera lens effects x SSAO

e Flares

e limited Depth Of Field
e Motion Blur e\
DoF

e High Dynamic Range
e Non-Photorealistic Rendering
e e.g, cell shading:
\ HDR

e 1.contours

e 2.lighting quantization
e Texture-for-geometry \
NPR

e Bump-mapping

e Parallax mapping

89

Shadow mapping

Marco Tarini
Universita degli Studi di Milano 37

3D Video Games 2024-05-30
15: Rendering Techniques for games

Shadow-mapping in a nutshell wir
(a multi-pass technique for shadows)

1st pass:
e camera in light position
e render all light blockers
e produce a depth buffer only (known as the shadow map)
e (repeat for each discrete light casting a shadow) \v
2nd pass:
e camera in final position

e for each fragment,
access the shadow-map,
determine if that
if fragment is visible
by light (or not)
e If notvisible,
negate contribution
of that discrete light source

e Result:
e Blockers cast a shadow

92
.)
Shadow-mapping T
concept
93

Marco Tarini
Universita degli Studi di Milano 38

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Shadow mapping:
issues

e Rendering shadow-map:

e Must be redone every time object move

e can be baked once and for all, for static objects only

e (jet another reason to label static objects!) . R
e Shadow-map resolution: optional topics

. L. (no exam)
e it matters! aliasing effects
e remedies: PCF, multi-res shadow-map «———

_—

94

Shadow Mapping:
effect of being in shadow

AR er
Q| 4 |+ | €a
AB e

material parameter

negated for that light source
(if with PCF: maybe only in part)

light parameter

geometry

95

Universita degli Studi di Milano

2024-05-30

39

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Shadow Mapping: e
effect of being in shadow

e Negates (zeroes) the
light term of that (discrete) light-source
(positional, directional, or spot- lights)

e Observe: the other lights are unaffected:
e Other (non shadowed) positional / directional lights
e Any ambient light

e Also, the emission factor (if present)

96

Two ways to compute AO: s

static AO versus SSAO

e Static Ambient Occlusion (or Baked AQ)
e Baked in preprocessing on each mesh, in Object Space
e Stored as a per-vertex attribute OR a texture
(called “AO-map”, or “light-map”)
e Pro: accurate & cheap (during rendering)
e Con: static! Doesn’t reflect current pos of the objects in the scene

e Screen Space Ambient Occlusion (SSAQ)
e |It’s a screen-space technique:
e 1%t pass: compute depth map (maybe normals too)

e 2" pass: compute AO map from the above
(AO factor of each pixel, depends on neighboring depth values)

e Final pass: use AO per-pixel from pass 2
e Pro: dynamic! Reflect current position of objects in the scene
e Con: less accurate

e The two can be combined!

98

Universita degli Studi di Milano

2024-05-30

40

3D Video Games

15: Rendering Techniques for games

Marco Tarini

Screen Space Ambient Occlusion

(SSAO)

Ll |

" ak

]
.

-

g

Yy L W -
| B e
. L W —

"o 1
I BLULE AT

!

P

. —

i TEE
SSAO only

— T R

99

Ambient occlusion (AO)

e Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

e “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

e |dea:

e the AO s a factor (between 0 and 1) for each surface point
e AO factor multiples the ambient component for that point
e Intuitively, for a point p, its AO factor is a measure of how

much p is exposed in the open
e pis well exposed: AO= 1.0

e pis hidden, e.g. it is in the bottom of a crack: AO = 0.0
e Exact definition - not in this course. But keep in mind:

e (1)itis an approximation

e (2)itisa purely geometrical computation

100

Universita degli Studi di Milano

2024-05-30

41

3D Video Games 2024-05-30
15: Rendering Techniques for games

_l‘—f

Ambient occlusion: L

effects

@
negates material parameter
some % light parameter
of this seometry
104
-)
i i Euli
(limited) e

Depth of Field

ﬁ\;”d

= depth
- in focus
range:
depth sharp
out of focus

range:
blurred

105

Marco Tarini
Universita degli Studi di Milano 42

3D Video Games 2024-05-30
15: Rendering Techniques for games

(limited) Depth of Field
in a nutshell

e Screen space technique:

e 1st pass: standard rendering, producing
e RGB image (kept off screen)
e depth-buffer (as usual)

e 2nd pass:
e pixel inside of focus range? Keep in focus

e pixel outside of focus range? blur

e Blur, way 1 = average with neighboring pixels
kernel size ~¥= amount of blur

e Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

106

HDR - High Dynamic Range
(limited Dynamic Range)

107

Marco Tarini
Universita degli Studi di Milano 43

3D Video Games

15: Rendering Techniques for games

Marco Tarini

HDR - High Dynamic Range ""'?;._-,1;._

in a nutshell

e Screen space technique:

e First pass: fill the off-screen buffer
like a normal rendering,
EXCEPT use lighting / materials value that are HDR
e 5o, RGB of final pixel values not in [0..1]
e e.g., sun emits light with RGB [15.0, 15.0, 15.0]: \
>1 = “overexposed”!
i.e., “whiter than white”

(here: 15 times brighter
than the maximal screen brightness)

e Second pass:
e Make values >1 bleed over neighboring pixels
e i.e.: overexposed pixels lighten neighbors pixels
e Result: halo effect

108

NPR rendering: s

e.g.: simulated pixel art

g
2"

¥ A

1Y Y9

img by Howard Day (2015)

118

Universita degli Studi di Milano

2024-05-30

44

