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One lighting equation...

repeat and sum for
each light
AL

The “ambient”

term
A

material parameter
light parameter

3D geometric data

3
Geometric Data
Material s“i\gb
properties @w\;gi‘mggﬁ
(data modelling %Lf,\r? %gv}al:ﬁi;
the «material»)
[lluminant
(data modelling
the Lighting
Environment)
Geometric data
(normal,
tangent dirs, the lighting
pos of viewer, etc) equation
1

Marco Tarini
Universita degli Studi di Milano

2024-05-30



3D Video Games

15: Rendering Techniques for games

Marco Tarini

The geometry in lighting: u,
normals...

e Per-vertex attribute of meshes, and/or per texel (normal maps)

... and tangent directions, ﬁ,
used for anisotropic materials

l n‘ .’ o)
(téngent spaée)'; e
requires tangent dirs

material:
requires tantent _dir

Al
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View-dependent and/or anisotropic

materials / lighting models.

e Aview-dependent lighting equation (or material)
is one which uses the view direction ¥

e Consequence: its results cannot be backed! (why?)

e Q: which terms of the lighting equations seen above
are “view-dependent”?

e Otherwise, it’s view-independent

e An anisotropic lighting equation (or material)
is one which uses the tangent directions

e Simulates real-world materials such as: satin, velvet, fabric

e Otherwise, it’s isotropic

Materials / lighting models

<P
'%
=
'%%v
view-independent
(aka Lambertian)

<@
'%
gg %17
view-dependent
(for example, Phong)

light dir s

normal

view dir —

@

'é
TURN!

view-dependent,
anisotropic
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Next: modelling
the Light environment

Material gﬁ,)ﬁ‘g
parameters @V\g(ﬁ%\e
(data modelling ij;d? 22,}\%$
the «material»)

[lluminant

(data modelling
the Lighting
Environment)
Geometric data

(e.g. normal,

tangent dirs, (the lighting
pos viewer) equation )

Approaches to model
the light environment in 2D games

We are about to discuss three ways:

e Discrete

e a finite set of individual light sources
(including one global ambient factor for the “leftovers”)

e Densely sampled

e environment maps:
textures sampling incoming light

e Basis functions

e aspherical function stored as
spherical harmonics coefficients

(They can be, and are, used jointly)

10
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Discrete illumination environments: 053

a set of individual light sources

e a finite set of “light sources”...
e nottoo many (e.g. <16)
e if more, can be assigned “priorities” to pick a subset

e each light sits in a node of the scene-graph
e each light is of one type...

11
Types of discrete light sources ‘s.';n *
g\\ 19 ',
2S | aw
ambient light directional lights
AN

positional lights spot-lights

12

Marco Tarini
Universita degli Studi di Milano 6



3D Video Games

15: Rendering Techniques for games

Marco Tarini

2024-05-30
Discrete illumination environments 053
world
-'/T{T w
B C D
T3 ==
/ rT4 \ . \l'6
E 15
F
T7 & :
/ N ' G = _
L
13
Discrete illumination environment L
repeat and sum for the one
each discrete light source “ambient” light
B ) - |
dr Ly SR Lr ar AR
@ L)|de |®( Le |+ (@ A)| 56 |®| Le |+| lag |®| Ac
dg Lg SB Ly ag Ap
nlerp(# , L ,0.5)
material parameter
light parameter
3D geometric data
14
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Types of discrete light sources : examples a -}l'ﬂ.
- |
ambient light directional lights
positional lights
(or point-lights) spot-lights
15
. . ] P
Ambient light I/;,' Lo
e models other all minor light sources + bounces
e light incoming “from every direction at every position”
e examples:
e in an overcast outdoor scene: high
e (dim shadows, flat looking lighting:
every photographs’ favorite for portraits!)
e in realistic outer space: zero
e in any other scenes : something in between
(e.g., sunny day, or torch-lit cave)
e the lighting env includes only one (or zero)
lights of this type
18
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_l‘_ !
Distance fall-off functions W

(for positional lights & spotlights)

e The light intensity of positional lights and spotlights
can be dimmed down with distance from light-pos P;,
to the pos of the fragment being lit Pp,
scaling it by some positional «fall-off» function

fp(IIPL — Ppll)
o Inthe real physical world, fp(d) = 1/d?
e Other functions can be used, for example fp(d ) = 1/d

farther:
less lit

- t/ closer:
PLF more lit @
19
. P
Angular fall-off functions RE
(for spotlights)
e For spotlights, the intensity is also dimmed down by
an «angular fall-off» function, when the direction of
the light emission E mismatches the light direction L ,
scaling it by some function
fD(_E' ¢ E)
e Forexample, fp(x) = 1/x10
T inside
% the light beam:
= more lit
2 outside
‘_Lﬂ the Iig:]t beam:
less lit
20
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Spot-lights: "‘-l,.,:-, Y
they can use a “cookie texture”

As an alternative to use angular fall-off functions

21
n N
In the lighting equation Cr
ene H.‘j |
repeat and sum for the one
each discrete light source “ambient” light
A A
0
dr Lg e[ SR Lg ag AR
(A-L)|de|®( L |+ (@A~ H) | s6|® Le |+ ac |®| 4c
dg Lg SB Lg as Ap
parameter
= of the
light
- P, — Pp
L="————
P, — Pell
22
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L)
Ui P g |
LA

Ambient light

Directional light

Types of discrete lights (a summary)

Positional light

Spotlight

(nothing)

(assumed at infinite)

Direction (versor)

(assumed at infinite)

Position (point)

Position (point)
&
Direction (versor)

Falloff function

Falloff function

Angular falloff
function

“Cookie” texture

Ambient Occlusion
either baked
(per-vertex or per-texel)
or dynamically computed
(see SSAO later)

(usually) dynamically computed
(see shadow-map technique later)

Cast shadows

0-1

0-N

0-N

0-N

Color/Intensity (RGB value)
Priority?

23

the lighting?

In which space to compute

Marco Tarini

dr Lg o[ SR Ly ag AR er
(ﬁ, f,) dG R\ Lg (ﬁ . ﬁ) Sg | Q| Lg |+ ag | Q| Ag |+ eg
dg Lg SB Lg ag Ap ep
3D Point / Vector / Versor
nlerp(¥ ,L , 0.5) Q: in which space to express them
i= PL— P (and the others like them)?

A: whichever!
As long as it’s the same space

24
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In which space to compute
the lighting?

HERE?
ArEERIRY : .
///7’, A (easy light dir)

Miiitis
light air [ World
Space

) HERE?
TO T1T (easy v. normals)

15

HERE?

(easy view dir)

LIGHT

space
light pos "' f

light pos

HERE!

(easy texture normals)

light pos & dir

25

In which space to compute
the lighting?

e All versors that used in the lighting equation
must be expressed in the same space

e view direction, light directions, half-way vector, normals, tangent dirs...

e Choice: which space to use?
e View space? (the space of the camera)
e World space?

for anisotropic materials

e Local object space? (the space of the object currently being rendered)

e With normal maps, usually the most efficient solution is:
e Use the same space the normals are expressed
e Fornormal stored as attribute: the Local Space (aka Object Space)
For Tangent Space normal maps: in the the TBN space. Then...
...all other versors must be transformed into this space, per vertex!
e ..the normals accessed from the texture can be used right away, per pixel!
This minimizes the amount of transformations needed

26
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Discrete illumination environments
Summary

e Pros:

e simple to position / reorient individual light sources
e both at design phase, or dynamically (at game exec)

e good model of illuminants, such as:
e explosions (positional lights) main illuminants
e car lights (spot-lights lights) of the scene!
e sun direction (directional light)

e relatively easy to compute (hard, soft) shadows for them

e Cons:

e each light source requires extra processing ... for each pixel!
e therefore: hard limit on their number. Prioritize

e theydon’t model well:
e area light sources (e.g., from back-lit clouds)
e reflections on metal objects

see
shadow
map
later

e therefore: are often given a (physically unjustified) radius of effect

27

Densely sampled
illumination environments

e Alightintensity / color from each direction d

e Asset to store that:
“Environment map” texture

28
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Densely sampled 1
illumination environments ‘

e latitude/longitude format
(of a unit vector d )

29

Densely sampled
illumination environments

e Aka “sky-map” texture
e whenit’s only / predominantly the sky to be featured
e doubles as textures for “sky boxes”

N
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Densely sampled
illumination environments

. unit vector
e Environment map: (asset) )

a texture with a texel t for each direction d
o tstores the intensity/color of the light coming from direction d
e Q: how to determine u, v position of t for a given d ?
e i.e. how to parametrize (flatten) the unit sphere
e Different answers are possible...

g

latitude/longitude format mirror sphere cube-map format

format (ad-hoc HW support!)

31

Environment map (asset)

A texture with a texel t for each direction d

e tstores the light coming from direction d

e useful to compute reflections on (curved) metallic objects
e often HDR (see later)

Pro: realistic, complex, detailed, hi-freq, light env

e best for mirroring materials (such as metal, glass, water)
Pro: can be captured from reality
e see “mat-cap”

Con: expensive to update

for dynamic scenes

e no prob, for static environments only
Con: assume far away illuminants
e Not accurate for close illuminant

32
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Environment map (asset): uses

1. Reflection mapping
e metallic objects
e material roughness = mipmap level!

Roughness 0 Roughness 0.25 Roughness 0.5
MIPMAP O MIPMAP 1 MIPMAP 2

Environment map (asset): uses

1. Reflection mapping
e metallic objects
e material roughness = mipmap level!

2. More generally,
description of the lighting env

e for lighting computation

3. Coverage of the background

e e.g., as a texture covering the
3D “skybox” / “skydome” mesh

34
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Skydome mesh i
lts transform:
e Centered at camera node
e QOriented as world node
Textured with:
e The environment map
35
Lighting env in the scene graph R
R
world
Env map
1o 7] W
B C D
T3
/ ’T4 \_6
E 15
T i R
7 o ‘
/ iy 2 G
L ) :
36
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Light environments:
using Basis Functions

e Lighting environment:
a continuous function f & )
e f (D) = amount of (rgb) light
coming from direction ¥
e Store f through basis functions

set of all unit vectors
(i.e., surface of the unit sphere)

—>]R«\

or R3if RGB
colored light

fixed spherical “basis” functions (always the same ones)

/ /

f@) =ago- foo@ +ay_1-fi1(D) + a0 fro® +apq1-fre(D) + -

N \ / /

a few scalar values to be stored, in order to represent (an approx. of) f

37

a set of functions

Spherical Harmonics (SpH):

falb -3 -2 -1 +2 +3
+1
0 [
0
-1
f2,42

39
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Spherical Harmonics (SpH):

a set of functions (a different visualization)

=

b
-3 -2 -1 0 +1 +2 +3
E)'O O
positive
o “ B negative

40

Spherical Harmonics (SpH):

a good choice for the basis functions

e Spherical Harmonics is a good set of basis functions for

spherical functions

the degree

e Each function in the set has two indices a, b

fap(@) with a >0, —a<b<+a
foo(P) =1 aconstant function
(so, scalar ag o represent the total amount of light)

all other basis function sum up to O 50, they control the distribution
(i.e., their integral over Q is zero) not the quantity, of light

they are designed to have useful mathematical properties
(e.g., orthogonality — the integral of the product of any two is 0)

all SpH functions are easy to compute, e.g. integrate, etc

41
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Light probes:

Light environment stored with SpH

(grayscale)
LIGHT ENV

stored, i.e., the representation of as Spherical Harmonics

@37% °+09 0—07 e+03 °+01 Q

f(U) foo ,— f1o f1+1 fz 2

]

fixed, immutable, closed form functions that are easy to compute and manipulate

fisstoredas (+0.5,+0.9, —0.7, +0.3, 0.1, ..)

(if it’s a colored Light Env, this is repeated for each R,G,B channel)

42

Light probes:
Light environment stored with SpH

Spherical Harmonics (SPH) in brief:

e store lllumination Env as a small number (4,9,16...) of scalar
weights of as many fixed spherical basis functions.

® Pros:
e very compact representation

e it models continuous functions well:
good for smooth lighting environments

e it allows for efficient computation of the Lighting equation
e it’'s easy to interpolate between light envs!
e Cons:

e continuous functions ONLY
e Not good for hi-freq details: for example, no hard lights
e not sudden variations (unless very many coefficient used)

e Good for soft light env

43
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Light probes
(position-dependent lighting env)

e Alight probe == a (precomputed) lighting env.
to be used around a given 3D position of the scene

e Light Probe lighting:

e preprocessing: disseminate the scene with light probes
e Store them as... low-res environment maps
e ..or, with SPH (the standard solution)

e atrendering time, for an object currently in pos (xyz),
use an interpolation of near-by “light probes”
e note: two (or more) SPH function can be interpolated!
e easy: just interpolate the weights

44

45

Light probes
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Light probes
(position-dependent lighting env)

46

GUIENCHA ||l umination-driven Light Probe Placement

2 oﬁz - K. Vardis' and A. A. Vasilakis' and G. Papaioannou
Department of Informatics, Athens University of Economics and Business
Light Probes. Our Method Results
Tnitial Light Probes

" Light probes help encode and represent global = Evaluation Points

Placement i typically performed as either an * Asimple and generic method
automatically laid-out grid or manually... &
Two-step algorithm
+ " Setup: Generate dense reference probes and supply light
Observations field evaluation points
+ simplification: ant prob
*+ Pacement shoukd depedon th ightig drbuton e L

Lighting setup A: Similar light source colors

+ Colour
+ Transform radiance to YCoCg and
. to weighted YCoCg
transitions companents for chrominance/luminance-based preference

e

Pacen
U Probes
<
-rh:u ol
- Radance Fd
L

mpication

Luminance-driven: 535 probes left

Lighting setup B: Contrasting light source colors

einer congrats

Vardis Thank you!

tzor -cavi P Q,\ﬂgm SOIHAVIDOUNT

Chrominance-drivens 45 probes left,

o ® Q080 V200080

1 Source code: github.com/cgauebl light_probe_placement
? b.

Yntigkidmards

Keynote O'Sullivan | Closing Session | Eurographics 2021

& Unlistea

Recently uploaded Watched

€ thatfast forward *is*

a7
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Rendering in 3D games
Part Il: Common CG techniques in games

50

Part Il

e Basics of GPU-based rendering
a brief summary of rasterization based rendering

programmable parts of the pipeline

depth-maps
e double buffering
e Rendering techniques & tricks used in games

Multi-pass technigues in general

Deferred shading
Screen space techniques in general

A summary of a few common CG techniques

51
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Rendering task for in 3D games: S
overview
e Real time

e (20 o0r) 30 or 60 FPS
e Hardware (GPU) based
e pipelined, stream processing
e therefore: one class of algorithms (hardwired)
e rasterization based algorithm
e recent trend: switch to ray-tracing algorithms?
e Complexity:
e Linear with # of primitives

e Linear with # of pixels

52

. =

High-level view of mesh rendering Lo

To render a mesh:
e |oad in GPU RAM:

v Geometry + Attributes
. THE MESH ASSET
Connectivity

Textures

THE MATERIAL ASSET

v

v

v Vertex + Fragment Shaders
v Global Material Parameters
v

Rendering Settings
e issue the Draw-call

For this lecture, we need go lower level (a bit)

53
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Rendering of a mesh =
rasterization of all its triangles

56

GPU pipeline —
a simplified conceptual version

y
g 7 final
V1 o
Vo vertex . fragment RGB
vED D
V2
V2
: ’ 2D screen fi t
ragments
3D vertex triangle (“wannabe pixel”)
+
attributes
57
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p oy
Rasterization based rendering: i
steps (remarks 1/2)
e Vertex processor: (per vertex)
e Input: vertex data (position + initial attributes)
e Output: a final screen position,
and other (refined) attributes
e Rasterizer: (per triangle)
e Input: a triplet of processed vertex (with attributes)
e Output: many “fragment”, one for each pixel covered by the triangle,
each with interpolated attributes
e Fragment shader: (per fragment)
e Input: a fragment (with attributes)
e Output: afinal rgb color (plus: an alpha value, plus: a depth value)
e Output combiner: (per fragment)
e Writes the rgb color on the screen buffer
e Overwrites, blends, or preserves the old value
62
.-ll__, _
Rasterization based rendering: L
steps (remarks 2/2)
e It's a pipelined architecture:
every step works in parallel with all others
e E.g., while fragment are processed, the next triangle is
being rasterized, and the next vertices are processed
e It's a SIMD architecture:
Every step does the same processing on several
inputs, producing several output, all in parallel,
e E.g., several fragments are processed at the same time
(each one independently from the others)
e E.g., same for vertices
63
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Rasterization-Based Rendering

[ HARD-WIRED in the GPU ]

per per final
vertex tr|ang|e fragment pixels

2D triangle "fragments”
on screen
vert/ces
PROGRAMMABLE: PROGRAMMABLE:
a user-defined a user-defined
"Vertex Shader" "Fragment Shader"
(or “vertex program”) (or “pixel program”)
65

Rasterization based rendering:
what is computed in each step

e Per vertex:

the .
Vertex e shape-blending - interpolation of the current morphs
Shader [ skinning - transform from rest pose to current pose (blending matrices)

L] projection - transform from object space to screen space

“® Per triangle: (rasterizer)
hard e back-face culling discard of back-facing triangles

wired e rasterization creation of fragments
e interpolation of per-vertex attributes «nota bene!

Per fragment:

[ ]
the L] texturing: accessing textures (including color, normal, alpha maps)
Fragment e lighting: from normal + lights + material to RGB
Shader L] aIpha—kiII: discard of (almost) fully transparent fragments

L] ng effect: pixels distant from the camera are blended with a “fog” color

wired

“® Per fragment: (output combiner)
hard o depth-test: occluded pixels are removed (often anticipated for performance)

° alpha—blend: semi-transparent fragments are mixed with background

66
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GPU pipeline — bottlenecks er

(remarks and terminology)

e Like in any pipeline, the process goes as slow as its slowest stage
e i.e., the «bottleneck» of the pipeline determines the total speed
e Any other stage is idle for part of the time (which is always a waste)
e stages before the bottleneck are «chocked»
(they cannot produce output because next stage is not ready)
e stages after it are «starved» (they wait for input from previous stage)
e Bottleneck terminology: (in CG)
e |If the bottleneck is per vertex, the app is goemetry-limited
(«it cannot process geometry fast enough»)
o If the bottleneck is per fragment, the app is fill-limited MORE COMMON
(«it cannot fill the screen buffer with pixel fast enough») CASE, FOR GAMES
e Performaces (rendering FPS) of a game only impoves
if computational load is removed from the bottleneck phase
Examples:
e using all meshes at LOD 2 instead of O does not help a fill-limited app
e reducing the resolution of the screen does not help a geometry-limited app
e using a simpler lighting model does not help a geometry-limited app
67
g
H Ju . L
In many game engines, G
" . ”
shaders are part of the “material asset
To render a mesh:
e |oad (in GPU RAM):
v Geometry + Attributes
. THE MESH ASSET
v Connectivity
v Textures
v Vertex + Fragment Shaders
. THE MATERIAL ASSET
v Global Material Parameters
v Rendering Settings
e issue the Draw-call
68
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Programming languages f""e;,;";. ]
for writing shaders

e High level:
e HLSL (High Level Shader Language, Direct3D, Microsoft)
e GLSL (OpenGL Shading Language)
e CG (C for Graphics, Nvidia)
e PSSL (PlayStation, Sony)
e MSL (Metal, Apple)

e Low level:

e ARB Shader Program
(the “assembler” of GPU — now deprecated)

69

Depth buffer -H:,“
(or Z-buffer) (or depth-map) 2D aray

of RGB values

. . 1 of some
e Any rendering producing a screen-buffer .. .
resolution

e which is sent to the screen

e ..also produces a depth-buffer — a 2D array
of depth values

(scalarsin Oto 1)

of the
e it's used during the rendering to determine occlusions | ssme resolution

and remove “hidden surfaces”
(i.e. make what is behind something else is not seen,
because it's covered by that something)

e asa by-product!
e not set to the screen: it’s an “offline” buffer

e see computer graphics course for more details

e many rendering algorithms exploit the depth-buffer
e for different uses

e for each pixel on the screen, we have not only its RGB value, but its depth
value (a scalar from 0 — close to the camera, to 1 —far from the camera)

70
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basics: Depth buffer L

screen

SCREEN BUFFER v AN
U T T——
o) |

transform  rasterize texturing,

lighting, ...
DEPTH-BUFFER by-product

+ depth test

71

basics: Double Buffering

e To render a scene, all meshes are rendered succession

e Filling the screen buffer

e Double-buffering is a basic technique to prevent any
incomplete buffer to ever reach the screen
e E.g., arendering where some of the meshes is still not rendered

e How it works:
e We have two RGB buffers: the front-buffer and the back-buffer

e The front buffer shows the last complete rendering
and is the one the screen shows

e The back bufferis filled by the renderings, but it is not shown
(it's yet another example of “off-screen buffer”)

e Screen Swap: When the back buffer is ready, the two buffer are
swapped (instantaneously)

e Info about variants: look up what “V-sync” means in 3D games settings
e Observation: the depth-buffer needs not be doubled

72
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basics: Double Buffering

\d
SCREEN BUFFER A

Scene
(geometry)

SCREEN BUFFER B

73

basics: Double Buffering

P

Scene
(geometry)

SCREEN BUFFER A
ber

Ve
ertex m‘
"ange Per
fra
Y WiP

SCREEN BUFFER B

74
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Off-screen buffers ok

e The rendering produces a
screen buffer (2D array of RGB pixel)
that is sent to the screen
and is made visible to the player

e A buffers that is used internally but and not sent
to the screen is called an off-screen buffer
e The depth buffer (2D array of depth values)
e The back-screen buffer (double buffering techniques)

e Many rendering techniques are based on
producing then using an off-screen buffer

75

acceSS(_eS)

Texture access: it’s in the per ‘vg;lﬁ-
fragment process

“Render Target”

SCREEN
BUFFER

2o S i
vere QRN verde 4

V2

GEOMETRY
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basics: Render to Texture
(multi-pass rendering)

“Render Target”

vo "
per per 1
E B . TEXTURE
GEOMETRY vertex . triangle
V2

other
accesses

TEXTURES

Vo W
R — per ® per SCREEN
vertex . triangle fragment BUFFER
V2

“Render Target”
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Multipass rendering techniques
(a wide class of rendering techniques)

e 1t pass: fill an internal 2D buffer
e i.e, an “off-screen” buffer (a buffer never shown to the user)
e it's the output of this rendering, i.e. its “render target”

e by default, the render target is the “screen buffer”
(the buffer shown to the screen), but not in this case

e this mechanism is aka “render to texture”
e 2" pass: fill the final screen buffer
e using the just-computed off-screen buffer as a 2D texture

e Note: good for GPU because...

e the off-screen buffer is either only write-only (15t pass)
or read-only (29 pass). Never both!

e the off-screen buffer is constructed and used in GPU RAM.
No expensive swap of memory between CPU and GPU!
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Screen-Space techniques (in general)
(a class of multi-pass rendering techniques)

e 15t pass:

e Render the scene from the same point of view
as the final scene

e Produce: final color buffer, plus a z-buffer
(and/or other auxiliary buffers)

e 2" pass:

e render just one single “full screen” rectangle

e (it fills the entire screens with two triangles)

e for each produced fragment: apply 2D effects to the buffer
e Notes:

e Basically, it’s a way to apply “post-production” 2D image filters
after the rendering.

e Many of the techniques in these slides are in this category

82

1st PASS

2nd PASS

Example: metallic reflections
of dynamic scenes

Scene

per per per
vertex triangle /fragment

transform  rasterize texturing,
lighting

(geometry)

Env-Map
(6 images)

transform  rasterize texturing,
lighting
including
reflection
over _ '
metallic objects img by Tze-Yiu Ho

= Final
—
Scene per per per \ .‘_’.‘r\ B < crecn-Buffer
(geometry) vertex triangle /fragment iy y
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° Deferred shading f aka Deferred rendering (inappropriate?)

e Which approach to use?
e Both are employed by games

e Basilar choice! Implementation of all other rendering
algorithms changes accordingly.

Main rendering algorithms: e
two classes of approaches
L Forward rendering aka Deferred lighting (actually, a variation)

85

Main rendering algorithmes:
two classes of approaches

e Forward rendering

Render Target

Scene

o) ‘
transform  rasterize texturing, h
depth test, SCREEN BUFFER ‘ !
etc,
and Lighting
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Main rendering algorithms:
two classes of approaches

aka Deferred lighting (actually, a variation)

e Deferred shading / aka Deferred rendering (inappropriate?)

(multiple) Render Targets (offscreen buffers)

ﬁ Scene per per per / N
; (geometry) vertex triangle /fragment ».
= transform  rasterize texturing,
depth test normals diffuse colors depth
tc, “ ” buff
jncd L%g G-BUFFER ufter
& A singl
< single per
o full-scr
87
Deferred shading
e Advantage:
lighting is computed only actually visible pixels
e it's a huge saving if large depth complexity (aka overdraw)
and/or lighting complexity — both common in 3D games
e Disadvantage:
needs a separate buffer for every material parameter
(or, sometimes, a material index)
e Normal buffer
e Depth buffer
e Base color buffer
e Limits the range of materials?
e Disadvantage: not good for semi-transparencies
88
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Some rendering techniques popular
in games (we will see a few of them)

e Shadowing

o wimPCF
e shadow mapping

e Screen Space Ambient Occlusion
e Camera lens effects x SSAO

e Flares

e limited Depth Of Field
e Motion Blur e\
DoF

e High Dynamic Range
e Non-Photorealistic Rendering
e e.g, cell shading:
\ HDR

e 1.contours

e 2.lighting quantization
e Texture-for-geometry \
NPR

e Bump-mapping

e Parallax mapping

89

Shadow mapping
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Shadow-mapping in a nutshell wir
(a multi-pass technique for shadows)

1st pass:
e camera in light position
e render all light blockers
e produce a depth buffer only (known as the shadow map)
e (repeat for each discrete light casting a shadow) \v
2nd pass:
e camera in final position

e for each fragment,
access the shadow-map,
determine if that
if fragment is visible
by light (or not)
e If notvisible,
negate contribution
of that discrete light source

e Result:
e Blockers cast a shadow

92
. )
Shadow-mapping T
concept
93
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Shadow mapping:
issues

e Rendering shadow-map:

e Must be redone every time object move

e can be baked once and for all, for static objects only

e (jet another reason to label static objects!) . R
e Shadow-map resolution: optional topics

. L. (no exam)
e it matters! aliasing effects
e remedies: PCF, multi-res shadow-map «———

_—

94

Shadow Mapping:
effect of being in shadow

AR er
Q| 4 |+ | €a
AB e

material parameter

negated for that light source
(if with PCF: maybe only in part)

light parameter

geometry
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Shadow Mapping: e
effect of being in shadow

e Negates (zeroes) the
light term of that (discrete) light-source
(positional, directional, or spot- lights)

e Observe: the other lights are unaffected:
e Other (non shadowed) positional / directional lights
e Any ambient light

e Also, the emission factor (if present)
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Two ways to compute AO: s

static AO versus SSAO

e Static Ambient Occlusion (or Baked AQ)
e Baked in preprocessing on each mesh, in Object Space
e Stored as a per-vertex attribute OR a texture
(called “AO-map”, or “light-map”)
e Pro: accurate & cheap (during rendering)
e Con: static! Doesn’t reflect current pos of the objects in the scene

e Screen Space Ambient Occlusion (SSAQ)
e |It’s a screen-space technique:
e 1%t pass: compute depth map (maybe normals too)

e 2" pass: compute AO map from the above
(AO factor of each pixel, depends on neighboring depth values)

e Final pass: use AO per-pixel from pass 2
e Pro: dynamic! Reflect current position of objects in the scene
e Con: less accurate

e The two can be combined!
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Screen Space Ambient Occlusion

(SSAO)

Ll |
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SSAO only
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Ambient occlusion (AO)

e Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

e “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

e |dea:

e the AO s a factor (between 0 and 1) for each surface point
e AO factor multiples the ambient component for that point
e Intuitively, for a point p, its AO factor is a measure of how

much p is exposed in the open
e pis well exposed: AO= 1.0

e pis hidden, e.g. it is in the bottom of a crack: AO = 0.0
e Exact definition - not in this course. But keep in mind:

e (1)itis an approximation

e (2)itisa purely geometrical computation

100

Universita degli Studi di Milano

2024-05-30

41



3D Video Games 2024-05-30
15: Rendering Techniques for games

_l‘—f

Ambient occlusion: L

effects

@
negates material parameter
some % light parameter
of this seometry
104
- )
i i Euli
(limited) e

Depth of Field

ﬁ\;”d

= depth
- in focus
range:
depth sharp
out of focus

range:
blurred
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(limited) Depth of Field
in a nutshell

e Screen space technique:

e 1st pass: standard rendering, producing
e RGB image (kept off screen)
e depth-buffer (as usual)

e 2nd pass:
e pixel inside of focus range? Keep in focus

e pixel outside of focus range? blur

e Blur, way 1 = average with neighboring pixels
kernel size ~¥= amount of blur

e Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

106

HDR - High Dynamic Range
(limited Dynamic Range)
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HDR - High Dynamic Range ""'?;._-,1;._

in a nutshell

e Screen space technique:

e First pass: fill the off-screen buffer
like a normal rendering,
EXCEPT use lighting / materials value that are HDR
e 5o, RGB of final pixel values not in [0..1]
e e.g., sun emits light with RGB [ 15.0, 15.0, 15.0]: \
>1 = “overexposed”!
i.e., “whiter than white”

(here: 15 times brighter
than the maximal screen brightness)

e Second pass:
e Make values >1 bleed over neighboring pixels
e i.e.: overexposed pixels lighten neighbors pixels
e Result: halo effect

108

NPR rendering: s

e.g.: simulated pixel art

g
2"

¥ A

1Y Y9

img by Howard Day (2015)
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